Thermal Characterization of Graphene Oxide-Epoxy Nanocomposites Produced by Aqueous Emulsion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Thermal Characterization of Graphene Oxide-Epoxy Nanocomposites Produced by Aqueous Emulsion

Authors: H. A. Brandão Cordeiro, M. G. Bocardo, N. C. Penteado, V. T. de Moraes, S. M. Giampietri Lebrão, G. W. Lebrão

Abstract:

The present study desired to obtain a nanocomposite of epoxy resin reinforced with graphene oxide (OG), for aerospace application, produced by aqueous emulsion. It was obtained proof bodies with 0.00 wt%, 0.10 wt%, 0.25 wt% and 0.50 wt% in weight of nanoparticles, to check the influence of it in the final quality of the obtained product. The validation of the results was done by the application thermal characterization by differential scanning calorimetry (DSC). It was seen that the nanocomposite reinforced with 0.10 wt% of OG showed the best results, the average glass transition temperature, at 2 °C, compared to the pure resin.

Keywords: Aqueous emulsion, graphene, nanocomposites, thermal characterization.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.2021713

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 857

References:


[1] Zhong, Yujia; Zhen, Zhen; Zhu, Hongwei. Graphene: Fundamental research and potential applications. Flatchem, (s.l.), v. 4, p.20-32, ago. 2017. Elsevier BV. http://dx.doi.org/10.1016/ j.flatc.2017.06.008.
[2] Rahim, Ishrat; Shah, Mutabar; IQBAL, Mahmood; Wahab, Fazal; Khan, Afzal; Khan, Shah Haider Fabrication and electrical characterizations of graphene nanocomposite thin film based heterojunction diode. Physica B: Condensed Matter, (s.l.), v. 524, p.97-103, nov. 2017. Elsevier BV. http://dx.doi.org/ 10.1016/j.physb.2017.07.073.
[3] Yanik, Mahir Ozan; Yigit, Ekrem Akif; Akansu, Yahya Erkan; Sahmetlioglu, Ertugrul. Magnetic conductive polymer-graphene nanocomposites based supercapacitors for energy storage. Energy, (s.l.), v. 138, p.883-889, nov. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.energy.2017.07.022.
[4] Park, Saibom; Park, Saibom; He, Siyao; Wang, Jianeng; Stein, Andreas; Macosko, Christopher W. Graphene-polyethylene nanocomposites: Effect of graphene functionalization. Polymer, (s.l.), v. 104, p.1-9, nov. 2016. Elsevier BV. http://dx.doi.org/10.1016/j.polymer.2016.09.058.
[5] Wang, Li; Zhang, Yujie; Wu, Aiguo; Wei, Gang. Designed graphene-peptide nanocomposites for biosensor applications: A review. Analytica Chimica Acta, (s.l.), v. 985, p.24-40, set. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.aca.2017.06.054.
[6] Velmurugan, R.; MOHAN, T. P. Epoxy-Clay Nanocomposites and Hybrids: Synthesis and Characterization. Journal Of Reinforced Plastics And Composites, (s.l.), v. 28, n. 1, p.17-37, 18 jul. 2008. SAGE Publications. http://dx.doi.org/10.1177/0731684407081439.
[7] Koo, Joseph H. Polymer Nanocomposites: Processing, Characterization and Applications. 1st. ed. Two Penn Plaza, New York, NY, 10121-2298, USA: McGraw-Hill, 2006. 272 p.
[8] Novoselov, K. S.; Geim, A. K.; Morozov; S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; DUBONOS, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, (s.l.), v. 438, n. 7065, p.197-200, nov. 2005. Springer Nature. http://dx.doi.org/10.1038/nature04233.
[9] Lee, Hee-Jin; Song, Ye-Seul; An, Kyu Tae; Choi, Kook; Kim, Sung-Ryong. Ultrasmooth transparent conductive hybrid films of reduced graphene oxide and single-walled carbon nanotube by ultrasonic spraying. Synthetic Metals, (s.l.), v. 221, p.340-344, nov. 2016. Elsevier BV. http://dx.doi.org/ 10.1016/ j.synthmet .2016 .10.012.
[10] Patole, A. S.; Patole, S. P.; Yoo, Kang, H.; Ji-Beom.; Hokim, Tae; Hoqhn, J. A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization. Journal Of Colloid And Interface Science, (s.l.), v. 350, n. 2, p.530-537, out. 2010. Elsevier BV. http://dx.doi.org/10.1016/j.jcis.2010.01.035.
[11] Hu H, Wang X, Wang J, Wan L, Liu F, Zheng H, Chen R, Xu C. (2010) Preparation and properties of graphene nanosheets-polystyrene nanocomposites via in situ emulsion polymerization. Chemical Physics Letters, n. 484, p. 247-253.
[12] Ganguli, S.; Aglan, H.; Dennig, P.; Irvin, G. (2006) Effect of Loading and Surface Modification of MWCNTs on the Fracture Behavior of Epoxy Nanocomposites. Journal Of Reinforced Plastics And Composites, (s.l.), v. 25, n. 2, p.175-188, 16 ago. 2005. SAGE Publications. http://dx.doi.org/ 10.1177/0731684405056425
[13] DA Silva, L. V.; Pezzin, S. H.; Rezende, M. C.; Campos, A. S.. Glass fiber/carbon nanotubes/epoxy three-component composites as radar absorbing materials. Polymer Composites, (s.l.), v. 37, n. 8, p.2277-2284, 20 mar. 2015. Wiley-Blackwell. http://dx.doi.org/10.1002/pc.23405.