Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
The Concentration Effects for the Adsorption Behavior of Heptyl Viologen Cation Radicals on Indium-Tin-Oxide Electrode Surfaces
Authors: Yusuke Ayato, Takashi Itahashi, Akiko Takatsu, Kenji Kato, Naoki Matsuda
Abstract:
In situ observation of absorption spectral change of heptil viologen cation radical (HV+.) was performed by slab optical waveguide (SOWG) spectroscopy utilizing indium-tin-oxide (ITO) electrodes. Synchronizing with electrochemical techniques, we observed the adsorption process of HV+.on the ITO electrode. In this study, we carried out the ITO-SOWG observations using KBr aqueous solution containing different concentration of HV to investigate the concentration dependent spectral change. A few specific absorption bands, which indicated HV+.existed as both monomer and dimer on ITO electrode surface with a monolayer or a few layers deposition, were observed in UV-visible region. The change in the peak position of the absorption spectra from adsorption species of HV+. were correlated with the concentration of HV as well as the electrode potential.Keywords: absorption phenomena, heptil viologen, indium-tin-oxide (ITO) electrode, in situ, slab optical waveguide(SOWG) spectroscopy,
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1079704
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542References:
[1] K. Kato, A. Ataka, N. Matsuda and Y. Sugitani. Chem. Lett., 1997, p. 583, 1997.
[2] K. Kato, A. Takatsu and N. Matsuda. Chem. Lett., 1999, p. 31, 1999.
[3] J. H. Santos, N. Matsuda, Z. Qi, A. Takatsu and K. Kato. Anal. Sci., 19, p. 199, 2003.
[4] K. Ito and A. Fujishima. J. Phys. Chem., 92, p. 7043, 1988.
[5] K. Tsunoda, T. Umemura, H. Ueno, E. Okuno and H. Akaiwa. Appl. Spectrosc., 57, p. 1273, 2003.
[6] D. R. Dunphy, S. B. Mendes, S. S. Saavedra and N. R. Armstrong. Anal. Chem., 69, p. 3086, 1997.
[7] K. Fujita and H. Ohno. Polym. Advanced Technol., 14, p. 486, 2003.
[8] Z.-M. Qi, N. Matsuda, A. Takatsu and K. Kato. J. Phys. Chem. B, 107, p. 6873, 2003.
[9] J. H. Santos, N. Matsuda, Z.-M. Qi, T. Yoshida, A. Takatsu and K. Kato. Mater. Trans., 45, p. 1015, 2004.
[10] Z.-M. Qi, N. Matsuda, A. Takatsu and K. Kato. Langmuir, 20, p. 778, 2004.
[11] Z.-M. Qi, N. Matsuda, T. Yoshida, H. Asano, A. Takatsu and K. Kato, Opt. Lett., 15, p. 2001, 2002.
[12] N. Matsuda, A. Takatsu, K. Kato and Y. Shigesato. Chem. Lett., 1998, p. 125, 1998.
[13] N. Matsuda, J. H. Santos, A. Takatsu and K. Kato. Thin Solid Films, 438-439, p. 403, 2003.
[14] N. Matsuda, J. H. Santos, A. Takatsu and K. Kato. Thin Solid Films, 445, p. 313, 2003.
[15] E. Kirowa-Eisner and E. Gileadi. J. Electroanal. Chem., 25, p. 481, 1970.
[16] C. J. Schoot, J. J. Ponjeé, H. T. van Dam, R. A. van Doom and P. T. Bolwijin. Appl. Phys. Lett., 23, p. 64, 1973.
[17] I. V. Shelepin, O. A. Ushakov, N. I. Karpova and V. A. Barachevskii. Electrokhimiya, 13, p. 32, 1977.
[18] S. F. Bailey and L. M. Smith, "Handbook of Agricultural Pest Control", Industry Publications, New York, 1951.
[19] T. Kuwana and E. Steckhan. Ber. Bunsenges. Phys. Chem., 78, p. 253, 1974.
[20] A. I. Krasna. J. Photochem. Photobiol., 31, p. 75, 1980.
[21] H. L. Landrum, R. T. Salmon and F. M. Hawkridge, J. Am. Chem. Soc., 99, p. 3154, 1977.
[22] C. D. Crawley and F. M. Hawkridge, Biochem. Biophys. Res. Commun., 99, p. 516, 1981.
[23] K. Arihara and F. Kitamura. J. Electroanal. Chem., 550-551, p. 149, 2003.
[24] K.-C. Ho, Y.-W. Fang, Y.-C. Hsu and L.-C. Chen. Solid State Ionics, 165, p. 279, 2003.
[25] T. Sagara and K. Miuchi. J. Electroanal. Chem., 567, p. 193, 2004.
[26] N. Leventis and Y. C. Chung. US patent 5, 457, 564, 1995.
[27] J. Stepp and J. B. Schlenoff. J. Electrochem. Soc., 144, L155, 1997.
[28] F. Campus, P. Bonhôe, M. Gräzel, S. Heinen and L. Walder. Sol. Energy Master. Sol. Cells, 56, p. 281, 1999.
[29] T. Lu and T. M. Cotton. J. Phys. Chem., 91, p. 5978, 1987.
[30] M. Osawa, K. Yoshii, Y. Hibino, T. Nakano and I. Noda. J. Electroanal. Chem., 426, p. 11, 1997.
[31] Y. Misono, M. Nagase and K. Itoh. Spectrochim. Acta, 50A, p. 1539, 1994.
[32] K. Arihara and F. Kitamura. J. Electroanal. Chem., 550-551, p. 149, 2003.
[33] R. J. Jasinski, J. Electrochem. Soc., 124, p. 637, 1977.
[34] T. Kawata, M. Yamamoto, M. Yamana, M. Tajima and T. Nakano. Jpn. J. Appl. Phys., 14, p. 725, 1975.
[35] A. Bewick, A. C. Lowe and C. W. Wederell. Electrochim. Acta, 28, p. 1899, 1983.
[36] M. Osawa and W. Suetaka. J. Electroanal. Chem., 270, p. 261, 1989.
[37] T. M. Cotton, J.-H. Kim and R. A. Uphaus. Microchem. J., 42, p. 44, 1990.
[38] H. X. Wang, T. Sagara, H. Sato and K. Niki. J. Electroanal. Chem., 331, p. 925, 1992.
[39] J. H. Santos, N. Matsuda, Z.-M. Qi, T. Yoshida, A. Takatsu and K. Kato. Surf. Interface Anal., 35, p. 432, 2003.
[40] M. Osawa, K. Yoshii, K. Ataka and T. Yotsuyanagi. Langmuir, 10, p. 640, 1994.
[41] Y. Ayato, A. Takatsu, K. Kato, J. H. Santos, T. Yoshida and N. Matsuda. J. Electroanal. Chem., 578, p. 137, 2005.
[42] J. F. Stargardt and F. M. Hawkridge. Anal. Chim. Acta, 146, p. 1, 1983.
[43] Y. Ayato, A. Takatsu, K. Kato and N. Matsuda. J. Electroanal. Chem., submitted.