Search results for: power consumption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3662

Search results for: power consumption

3632 Influence of Driving Strategy on Power and Fuel Consumption of Lightweight PEM Fuel Cell Vehicle Powertrain

Authors: Suhadiyana Hanapi, Alhassan Salami Tijani, W. A. N Wan Mohamed

Abstract:

In this paper, a prototype PEM fuel cell vehicle integrated with a 1 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack as a main power sources has been developed for a lightweight cruising vehicle. The test vehicle is equipped with a PEM fuel cell system that provides electric power to a brushed DC motor. This vehicle was designed to compete with industrial lightweight vehicle with the target of consuming least amount of energy and high performance. Individual variations in driving style have a significant impact on vehicle energy efficiency and it is well established from the literature. The primary aim of this study was to assesses the power and fuel consumption of a hydrogen fuel cell vehicle operating at three difference driving technique (i.e. 25 km/h constant speed, 22-28 km/h speed range, 20-30 km/h speed range). The goal is to develop the best driving strategy to maximize performance and minimize fuel consumption for the vehicle system. The relationship between power demand and hydrogen consumption has also been discussed. All the techniques can be evaluated and compared on broadly similar terms. Automatic intelligent controller for driving prototype fuel cell vehicle on different obstacle while maintaining all systems at maximum efficiency was used. The result showed that 25 km/h constant speed was identified for optimal driving with less fuel consumption.

Keywords: Prototype fuel cell electric vehicles, energy efficient, control/driving technique, fuel economy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072
3631 Concepts for Designing Low Power Wireless Sensor Network

Authors: Bahareh Gholamzadeh, Hooman Nabovati

Abstract:

Wireless sensor networks have been used in wide areas of application and become an attractive area for researchers in recent years. Because of the limited energy storage capability of sensor nodes, Energy consumption is one of the most challenging aspects of these networks and different strategies and protocols deals with this area. This paper presents general methods for designing low power wireless sensor network. Different sources of energy consumptions in these networks are discussed here and techniques for alleviating the consumption of energy are presented.

Keywords: Energy consumption, MAC protocol, Routing protocol, Sensor node, Topology control, Wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165
3630 Lighting Consumption Analysis in Retail Industry: Comparative Study

Authors: Elena C. Tamaş, Grațiela M. Țârlea, Gianni Flamaropol, Dragoș Hera

Abstract:

This article is referring to a comparative study regarding the electrical energy consumption for lighting on diverse types of big sizes commercial buildings built in Romania after 2007, having 3, 4, 5 versus 8, 9, 10 operational years. Some buildings have installed building management systems (BMS) to monitor also the lighting performances starting with the opening days till the present days but some have chosen only local meters to implement. Firstly, for each analyzed building, the total required energy power and the energy power consumption for lighting were calculated depending on the lamps number, the unit power and the average daily running hours. All objects and installations were chosen depending on the destination/location of the lighting (exterior parking or access, interior or covering parking, building interior and building perimeter). Secondly, to all lighting objects and installations, mechanical counters were installed, and to the ones linked to BMS there were installed the digital meters as well for a better monitoring. Some efficient solutions are proposed to improve the power consumption, for example the 1/3 lighting functioning for the covered and exterior parking lighting to those buildings if can be done. This type of lighting share can be performed on each level, especially on the night shifts. Another example is to use the dimmers to reduce the light level, depending on the executed work in the respective area, and a 30% power energy saving can be achieved. Using the right BMS to monitor, the energy consumption depending on the average operational daily hours and changing the non-performant unit lights with the ones having LED technology or economical ones might increase significantly the energy performances and reduce the energy consumption of the buildings.

Keywords: Lighting consumption, commercial buildings, maintenance, energy performances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 987
3629 Design and Analysis of a Low Power High Speed 1 Bit Full Adder Cell Based On TSPC Logic with Multi-Threshold CMOS

Authors: Ankit Mitra

Abstract:

An adder is one of the most integral component of a digital system like a digital signal processor or a microprocessor. Being an extremely computationally intensive part of a system, the optimization for speed and power consumption of the adder is of prime importance. In this paper we have designed a 1 bit full adder cell based on dynamic TSPC logic to achieve high speed operation. A high threshold voltage sleep transistor is used to reduce the static power dissipation in standby mode. The circuit is designed and simulated in TSPICE using TSMC 180nm CMOS process. Average power consumption, delay and power-delay product is measured which showed considerable improvement in performance over the existing full adder designs.

Keywords: CMOS, TSPC, MTCMOS, ALU, Clock gating, power gating, pipelining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3084
3628 Design of CMOS CFOA Based on Pseudo Operational Transconductance Amplifier

Authors: Hassan Jassim Motlak

Abstract:

A novel design technique employing CMOS Current Feedback Operational Amplifier (CFOA) is presented. The feature of consumption very low power in designing pseudo-OTA is used to decreasing the total power consumption of the proposed CFOA. This design approach applies pseudo-OTA as input stage cascaded with buffer stage. Moreover, the DC input offset voltage and harmonic distortion (HD) of the proposed CFOA are very low values compared with the conventional CMOS CFOA due to the symmetrical input stage. P-Spice simulation results are obtained using 0.18μm MIETEC CMOS process parameters and supply voltage of ±1.2V, 50μA biasing current. The p-spice simulation shows excellent improvement of the proposed CFOA over existing CMOS CFOA. Some of these performance parameters, for example, are DC gain of 62. dB, openloop gain bandwidth product of 108 MHz, slew rate (SR+) of +71.2V/μS, THD of -63dB and DC consumption power (PC) of 2mW.

Keywords: Pseudo-OTA used CMOS CFOA, low power CFOA, high-performance CFOA, novel CFOA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2861
3627 Efficient Power-Delay Product Modulo 2n+1 Adder Design

Authors: Yavar Safaei Mehrabani, Mehdi Hosseinzadeh

Abstract:

As embedded and portable systems were emerged power consumption of circuits had been major challenge. On the other hand latency as determines frequency of circuits is also vital task. Therefore, trade off between both of them will be desirable. Modulo 2n+1 adders are important part of the residue number system (RNS) based arithmetic units with the interesting moduli set (2n-1,2n, 2n+1). In this manuscript we have introduced novel binary representation to the design of modulo 2n+1 adder. VLSI realization of proposed architecture under 180 nm full static CMOS technology reveals its superiority in terms of area, power consumption and power-delay product (PDP) against several peer existing structures.

Keywords: Computer arithmetic, modulo 2n+1 adders, Residue Number System (RNS), VLSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810
3626 Genetic Algorithm Optimization of a Small Scale Natural Gas Liquefaction Process

Authors: M. I. Abdelhamid, A. O. Ghallab, R. S. Ettouney, M. A. El-Rifai

Abstract:

An optimization scheme based on COM server is suggested for communication between Genetic Algorithm (GA) toolbox of MATLAB and Aspen HYSYS. The structure and details of the proposed framework are discussed. The power of the developed scheme is illustrated by its application to the optimization of a recently developed natural gas liquefaction process in which Aspen HYSYS was used for minimization of the power consumption by optimizing the values of five operating variables. In this work, optimization by coupling between the GA in MATLAB and Aspen HYSYS model of the same process using the same five decision variables enabled improvements in power consumption by 3.3%, when 77% of the natural gas feed is liquefied. Also on inclusion of the flow rates of both nitrogen and carbon dioxide refrigerants as two additional decision variables, the power consumption decreased by 6.5% for a 78% liquefaction of the natural gas feed.

Keywords: Stranded gas liquefaction, genetic algorithm, COM server, single nitrogen expansion, carbon dioxide pre-cooling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
3625 Performance Evaluation of AOMDV-PAMAC Protocols for Ad Hoc Networks

Authors: B. Malarkodi, S. K. Riyaz Hussain, B. Venkataramani

Abstract:

Power consumption of nodes in ad hoc networks is a critical issue as they predominantly operate on batteries. In order to improve the lifetime of an ad hoc network, all the nodes must be utilized evenly and the power required for connections must be minimized. In this project a link layer algorithm known as Power Aware medium Access Control (PAMAC) protocol is proposed which enables the network layer to select a route with minimum total power requirement among the possible routes between a source and a destination provided all nodes in the routes have battery capacity above a threshold. When the battery capacity goes below a predefined threshold, routes going through these nodes will be avoided and these nodes will act only as source and destination. Further, the first few nodes whose battery power drained to the set threshold value are pushed to the exterior part of the network and the nodes in the exterior are brought to the interior. Since less total power is required to forward packets for each connection. The network layer protocol AOMDV is basically an extension to the AODV routing protocol. AOMDV is designed to form multiple routes to the destination and it also avoid the loop formation so that it reduces the unnecessary congestion to the channel. In this project, the performance of AOMDV is evaluated using PAMAC as a MAC layer protocol and the average power consumption, throughput and average end to end delay of the network are calculated and the results are compared with that of the other network layer protocol AODV.

Keywords: AODV, PAMAC, AOMDV, Power consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
3624 Performance Analysis of Energy-Efficient Home Femto Base Stations

Authors: Yun Won Chung

Abstract:

The energy consumption of home femto base stations (BSs) can be reduced, by turning off the Wi-Fi radio interface when there is no mobile station (MS) under the coverage of the BSs or MSs do not transmit or receive data packet for long time, especially in late night. In the energy-efficient home femto BSs, if MSs have any data packet to transmit and the Wi-Fi radio interface in off state, MSs wake up the Wi-Fi radio interface of home femto BSs by using additional low power radio interface. In this paper, the performance of the energy-efficient home femto BSs from the aspect of energy consumption and cumulative average delay, and show the effect of various parameters on energy consumption and cumulative average delay. From the results, the tradeoff relationship between energy consumption and cumulative average delay is shown and thus, appropriate operation should be needed to balance the tradeoff.

Keywords: energy consumption, power saving, femto base station.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909
3623 A Case Study of Limited Dynamic Voltage Frequency Scaling in Low-Power Processors

Authors: Hwan Su Jung, Ahn Jun Gil, Jong Tae Kim

Abstract:

Power management techniques are necessary to save power in the microprocessor. By changing the frequency and/or operating voltage of processor, DVFS can control power consumption. In this paper, we perform a case study to find optimal power state transition for DVFS. We propose the equation to find the optimal ratio between executions of states while taking into account the deadline of processing time and the power state transition delay overhead. The experiment is performed on the Cortex-M4 processor, and average 6.5% power saving is observed when DVFS is applied under the deadline condition.

Keywords: Deadline, Dynamic Voltage Frequency Scaling, Power State Transition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 965
3622 Air Handling Units Power Consumption Using Generalized Additive Model for Anomaly Detection: A Case Study in a Singapore Campus

Authors: Ju Peng Poh, Jun Yu Charles Lee, Jonathan Chew Hoe Khoo

Abstract:

The emergence of digital twin technology, a digital replica of physical world, has improved the real-time access to data from sensors about the performance of buildings. This digital transformation has opened up many opportunities to improve the management of the building by using the data collected to help monitor consumption patterns and energy leakages. One example is the integration of predictive models for anomaly detection. In this paper, we use the GAM (Generalised Additive Model) for the anomaly detection of Air Handling Units (AHU) power consumption pattern. There is ample research work on the use of GAM for the prediction of power consumption at the office building and nation-wide level. However, there is limited illustration of its anomaly detection capabilities, prescriptive analytics case study, and its integration with the latest development of digital twin technology. In this paper, we applied the general GAM modelling framework on the historical data of the AHU power consumption and cooling load of the building between Jan 2018 to Aug 2019 from an education campus in Singapore to train prediction models that, in turn, yield predicted values and ranges. The historical data are seamlessly extracted from the digital twin for modelling purposes. We enhanced the utility of the GAM model by using it to power a real-time anomaly detection system based on the forward predicted ranges. The magnitude of deviation from the upper and lower bounds of the uncertainty intervals is used to inform and identify anomalous data points, all based on historical data, without explicit intervention from domain experts. Notwithstanding, the domain expert fits in through an optional feedback loop through which iterative data cleansing is performed. After an anomalously high or low level of power consumption detected, a set of rule-based conditions are evaluated in real-time to help determine the next course of action for the facilities manager. The performance of GAM is then compared with other approaches to evaluate its effectiveness. Lastly, we discuss the successfully deployment of this approach for the detection of anomalous power consumption pattern and illustrated with real-world use cases.

Keywords: Anomaly detection, digital twin, Generalised Additive Model, Power Consumption Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 508
3621 Conception of a Reliable, Low Cost and Autonomous Explorative Hovercraft

Authors: S. Burgalat, L. Teilhac, A. Brand, E. Chastel, M. Jumeline

Abstract:

The paper presents actual benefits and drawbacks of a multidirectional autonomous hovercraft conceived with limited resources and designed for indoor exploration. Recent developments in the field have led to the apparition of very powerful automotive systems capable of very high calculation and exploration in complex unknown environments. They usually propose very complex algorithms, high precision/cost sensors and sometimes have heavy calculation consumption with complex data fusion. These systems are usually powerful but have a certain price, and the benefits may not be worth the cost, especially considering their hardware limitations and their power consumption. The present approach is to build a compromise between cost, power consumption and results preciseness.

Keywords: Hovercraft, Indoor Exploration, Autonomous, Multidirectional, Wireless Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2233
3620 LFSR Counter Implementation in CMOS VLSI

Authors: Doshi N. A., Dhobale S. B., Kakade S. R.

Abstract:

As chip manufacturing technology is suddenly on the threshold of major evaluation, which shrinks chip in size and performance, LFSR (Linear Feedback Shift Register) is implemented in layout level which develops the low power consumption chip, using recent CMOS, sub-micrometer layout tools. Thus LFSR counter can be a new trend setter in cryptography and is also beneficial as compared to GRAY & BINARY counter and variety of other applications. This paper compares 3 architectures in terms of the hardware implementation, CMOS layout and power consumption, using Microwind CMOS layout tool. Thus it provides solution to a low power architecture implementation of LFSR in CMOS VLSI.

Keywords: Chip technology, Layout level, LFSR, Pass transistor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4521
3619 The Effect of Energy Consumption and Losses on the Nigerian Manufacturing Sector: Evidence from the ARDL Approach

Authors: Okezie A. Ihugba

Abstract:

The bounds testing ARDL (2, 2, 2, 2, 0) technique to cointegration was used in this study to investigate the effect of energy consumption and energy loss on Nigeria's manufacturing sector from 1981 to 2020. The model was created to determine the relationship between these three variables while also accounting for interactions with control variables such as inflation and commercial bank loans to the manufacturing sector. When the dependent variables are energy consumption and energy loss, the bound tests show that the variables of interest are bound together in the long run. Because electricity consumption is a critical factor in determining manufacturing value-added in Nigeria, some intriguing observations were made. According to the findings, the relationship between log of electricity consumption (LELC) and log of manufacturing value added (LMVA) is statistically significant. According to the findings, electricity consumption reduces manufacturing value-added. The target variable (energy loss) is statistically significant and has a positive sign. In Nigeria, a 1% reduction in energy loss increases manufacturing value-added by 36% in the first lag and 35% in the second. According to the study, the government should speed up the ongoing renovation of existing power plants across the country, as well as the construction of new gas-fired power plants. This will address a number of issues, including overpricing of electricity as a result of grid failure.

Keywords: ARDL, cointegration, Nigeria's manufacturing, electricity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 428
3618 Handover for Dense Small Cells Heterogeneous Networks: A Power-Efficient Game Theoretical Approach

Authors: Mohanad Alhabo, Li Zhang, Naveed Nawaz

Abstract:

In this paper, a non-cooperative game method is formulated where all players compete to transmit at higher power. Every base station represents a player in the game. The game is solved by obtaining the Nash equilibrium (NE) where the game converges to optimality. The proposed method, named Power Efficient Handover Game Theoretic (PEHO-GT) approach, aims to control the handover in dense small cell networks. Players optimize their payoff by adjusting the transmission power to improve the performance in terms of throughput, handover, power consumption and load balancing. To select the desired transmission power for a player, the payoff function considers the gain of increasing the transmission power. Then, the cell selection takes place by deploying Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). A game theoretical method is implemented for heterogeneous networks to validate the improvement obtained. Results reveal that the proposed method gives a throughput improvement while reducing the power consumption and minimizing the frequent handover.

Keywords: Energy efficiency, game theory, handover, HetNets, small cells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 479
3617 Energy Conscious Builder Design Pattern with C# and Intermediate Language

Authors: Kayun Chantarasathaporn, Chonawat Srisa-an

Abstract:

Design Patterns have gained more and more acceptances since their emerging in software development world last decade and become another de facto standard of essential knowledge for Object-Oriented Programming developers nowadays. Their target usage, from the beginning, was for regular computers, so, minimizing power consumption had never been a concern. However, in this decade, demands of more complicated software for running on mobile devices has grown rapidly as the much higher performance portable gadgets have been supplied to the market continuously. To get along with time to market that is business reason, the section of software development for power conscious, battery, devices has shifted itself from using specific low-level languages to higher level ones. Currently, complicated software running on mobile devices are often developed by high level languages those support OOP concepts. These cause the trend of embracing Design Patterns to mobile world. However, using Design Patterns directly in software development for power conscious systems is not recommended because they were not originally designed for such environment. This paper demonstrates the adapted Design Pattern for power limitation system. Because there are numerous original design patterns, it is not possible to mention the whole at once. So, this paper focuses only in creating Energy Conscious version of existing regular "Builder Pattern" to be appropriated for developing low power consumption software.

Keywords: Design Patterns, Builder Pattern, Low Power Consumption, Object Oriented Programming, Power Conscious System, Software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
3616 Reduction of Energy Consumption Using Smart Home Techniques in the Household Sector

Authors: Ahmed Al-Adaileh, Souheil Khaddaj

Abstract:

Outcomes of exhaustion of natural resources started influencing each spirit on this planet. Energy is an essential factor in this aspect. To restore the circumstance to the appropriate track, all attempts must focus on two fundamental branches: producing electricity from clean and renewable reserves and decreasing the overall unnecessary consumption of energy. The focal point of this paper will be on lessening the power consumption in the household's segment. This paper is an attempt to give a clear understanding of a framework called Reduction of Energy Consumption in Household Sector (RECHS) and how it should help householders to reduce their power consumption by substituting their household appliances, turning-off the appliances when stand-by modus is detected, and scheduling their appliances operation periods. Technically, the framework depends on utilizing Z-Wave compatible plug-ins which will be connected to the usual house devices to gauge and control them remotely and semi-automatically. The suggested framework underpins numerous quality characteristics, for example, integrability, scalability, security and adaptability.

Keywords: Smart energy management systems, internet of things, wireless mesh networks, microservices, cloud computing, big data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 805
3615 Power Minimization in Decode-and-XOR-Forward Two-Way Relay Networks

Authors: Dong-Woo Lim, Chang-Jae Chun, Hyung-Myung Kim

Abstract:

We consider a two-way relay network where two sources exchange information. A relay helps the two sources exchange information using the decode-and-XOR-forward protocol. We investigate the power minimization problem with minimum rate constraints. The system needs two time slots and in each time slot the required rate pair should be achievable. The power consumption is minimized in each time slot and we obtained the closed form solution. The simulation results confirm that the proposed power allocation scheme consumes lower total power than the conventional schemes.

Keywords: Decode-and-XOR-forward, power minimization, two-way relay

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
3614 Low Power Consuming Electromagnetic Actuators for Pulsed Pilot Stages

Authors: M. Honarpardaz, Z. Zhang, J. Derkx, A. Trangärd, J. Larsson

Abstract:

Pilot stages are one of the most common positioners and regulators in industry. In this paper, we present two novel concepts for pilot stages with low power consumption to regulate a pneumatic device. Pilot 1, first concept, is designed based on a conventional frame core electro-magnetic actuator and a leaf spring to control the air flow and pilot 2 has an axisymmetric actuator and spring made of non-oriented electrical steel. Concepts are simulated in a system modeling tool to study their dynamic behavior. Both concepts are prototyped and tested. Experimental results are comprehensively analyzed and compared. The most promising concept that consumes less than 8 mW is highlighted and presented.

Keywords: Electro-magnetic actuator, multidisciplinary system, low power consumption, pilot stage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 971
3613 A Power Reduction Technique for Built-In-Self Testing Using Modified Linear Feedback Shift Register

Authors: Mayank Shakya, Soundra Pandian. K. K

Abstract:

A linear feedback shift register (LFSR) is proposed which targets to reduce the power consumption from within. It reduces the power consumption during testing of a Circuit Under Test (CUT) at two stages. At first stage, Control Logic (CL) makes the clocks of the switching units of the register inactive for a time period when output from them is going to be same as previous one and thus reducing unnecessary switching of the flip-flops. And at second stage, the LFSR reorders the test vectors by interchanging the bit with its next and closest neighbor bit. It keeps fault coverage capacity of the vectors unchanged but reduces the Total Hamming Distance (THD) so that there is reduction in power while shifting operation.

Keywords: Linear Feedback Shift Register, Total Hamming Distance, Fault Coverage, Control Logic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034
3612 Characteristics of Ozone Generated from Dielectric Barrier Discharge Plasma Actuators

Authors: R. Osada, S. Ogata, T. Segawa

Abstract:

Dielectric barrier discharge plasma actuators (DBD-PAs) have been developed for active flow control devices. However, it is necessary to reduce ozone produced by DBD toward practical applications using DBD-PAs. In this study, variations of ozone concentration, flow velocity, power consumption were investigated by changing exposed electrodes of DBD-PAs. Two exposed electrode prototypes were prepared: span-type with exposed electrode width of 0.1 mm, and normal-type with width of 5 mm. It was found that span-type shows lower power consumption and higher flow velocity than that of normal-type at Vp-p = 4.0-6.0 kV. Ozone concentration of span-type higher than normal-type at Vp-p = 4.0-8.0 kV. In addition, it was confirmed that catalyst located in downstream from the exposed electrode can reduce ozone concentration between 18 and 42% without affecting the induced flow.

Keywords: Dielectric barrier discharge plasma actuators, ozone diffusion, PIV measurement, power consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200
3611 The Evaluation of Electricity Generation and Consumption from Solar Generator: A Case Study at Rajabhat Suan Sunandha’s Learning Center in Samutsongkram

Authors: Chonmapat Torasa

Abstract:

This paper presents the performance of electricity generation and consumption from solar generator installed at Rajabhat Suan Sunandha’s learning center in Samutsongkram. The result from the experiment showed that solar cell began to work and distribute the current into the system when the solar energy intensity was 340 w/m2, starting from 8:00 am to 4:00 pm (duration of 8 hours). The highest intensity read during the experiment was 1,051.64w/m2. The solar power was 38.74kWh/day. The electromotive force from solar cell averagely was 93.6V. However, when connecting solar cell with the battery charge controller system, the voltage was dropped to 69.07V. After evaluating the power distribution ability and electricity load of tested solar cell, the result showed that it could generate power to 11 units of 36-watt fluorescent lamp bulbs, which was altogether 396W. In the meantime, the AC to DC power converter generated 3.55A to the load, and gave 781VA.

Keywords: Solar Cell, Solar-cell power generating system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075
3610 Impact of Government Spending on Private Consumption and on the Economy: The Case of Thailand

Authors: Paitoon Kraipornsak

Abstract:

Government spending is categorized into consumption spending and capital spending. Three categories of private consumption are used: food consumption, nonfood consumption, and services consumption. The estimated model indicates substitution effects of government consumption spending on budget shares of private nonfood consumption and of government capital spending on budget share of private food consumption. However, the results do not indicate whether the negative effects of changes in the budget shares of the nonfood and the food consumption equates to reduce total private consumption. The concept of aggregate demand comprising consumption, investment, government spending (consumption spending and capital spending), export, and import are used to estimate their relationship by using the Vector Error Correction Mechanism. The study found no effect of government capital spending on either the private consumption or the growth of GDP while the government consumption spending has negative effect on the growth of GDP.

Keywords: Complementary effect, government capital spending, government consumption spending, private consumption on food, nonfood, and services, substitution effect, vector error correction mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2213
3609 Power Reduction by Automatic Monitoring and Control System in Active Mode

Authors: Somaye Abdollahi Pour, Mohsen Saneei

Abstract:

This paper describes a novel monitoring scheme to minimize total active power in digital circuits depend on the demand frequency, by adjusting automatically both supply voltage and threshold voltages based on circuit operating conditions such as temperature, process variations, and desirable frequency. The delay monitoring results, will be control and apply so as to be maintained at the minimum value at which the chip is able to operate for a given clock frequency. Design details of power monitor are examined using simulation framework in 32nm BTPM model CMOS process. Experimental results show the overhead of proposed circuit in terms of its power consumption is about 40 μW for 32nm technology; moreover the results show that our proposed circuit design is not far sensitive to the temperature variations and also process variations. Besides, uses the simple blocks which offer good sensitivity, high speed, the continuously feedback loop. This design provides up to 40% reduction in power consumption in active mode.

Keywords: active mode, delay monitor, body biasing, VDD scaling, low power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
3608 Energy Efficiency Testing of Fluorescent and WOLED (White Organic LED)

Authors: Hari Maghfiroh, Harry Prabowo

Abstract:

WOLED is widely used as lighting for high efficacy and little power consumption. In this research, power factor testing between WOLED and fluorescent lamp to see which one is more efficient in consuming energy. Since both lamps use semiconductor components, so calculation of the power factor need to consider the effects of harmonics. Harmonic make bigger losses. The study is conducted by comparing the value of the power factor regardless of harmonics (DPF) and also by included the harmonics (TPF). The average value of DPF of fluorescent is 0.953 while WOLED is 0.972. The average value of TPF of fluorescent is 0.717 whereas WOLED is 0.933. So from the review of power factor WOLED is more energy efficient than fluorescent lamp.

Keywords: Fluorescent, harmonic, power factor, WOLED.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
3607 Ec-A: A Task Allocation Algorithm for Energy Minimization in Multiprocessor Systems

Authors: Anju S. Pillai, T.B. Isha

Abstract:

With the necessity of increased processing capacity with less energy consumption; power aware multiprocessor system has gained more attention in the recent future. One of the additional challenges that is to be solved in a multi-processor system when compared to uni-processor system is job allocation. This paper presents a novel task dependent job allocation algorithm: Energy centric- Allocation (Ec-A) and Rate Monotonic (RM) scheduling to minimize energy consumption in a multiprocessor system. A simulation analysis is carried out to verify the performance increase with reduction in energy consumption and required number of processors in the system.

Keywords: Energy consumption, Job allocation, Multiprocessor systems, Task dependent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196
3606 A Novel Low Power, High Speed 14 Transistor CMOS Full Adder Cell with 50% Improvement in Threshold Loss Problem

Authors: T. Vigneswaran, B. Mukundhan, P. Subbarami Reddy

Abstract:

Full adders are important components in applications such as digital signal processors (DSP) architectures and microprocessors. In addition to its main task, which is adding two numbers, it participates in many other useful operations such as subtraction, multiplication, division,, address calculation,..etc. In most of these systems the adder lies in the critical path that determines the overall speed of the system. So enhancing the performance of the 1-bit full adder cell (the building block of the adder) is a significant goal.Demands for the low power VLSI have been pushing the development of aggressive design methodologies to reduce the power consumption drastically. To meet the growing demand, we propose a new low power adder cell by sacrificing the MOS Transistor count that reduces the serious threshold loss problem, considerably increases the speed and decreases the power when compared to the static energy recovery full (SERF) adder. So a new improved 14T CMOS l-bit full adder cell is presented in this paper. Results show 50% improvement in threshold loss problem, 45% improvement in speed and considerable power consumption over the SERF adder and other different types of adders with comparable performance.

Keywords: Arithmetic circuit, full adder, multiplier, low power, very Large-scale integration (VLSI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3975
3605 Zigbee Based Wireless Energy Surveillance System for Energy Savings

Authors: Won-Ho Kim, Chang-Ho Hyun, Moon-Jung Kim

Abstract:

In this paper, zigbee communication based wireless energy surveillance system is presented. The proposed system consists of multiple energy surveillance devices and an energy surveillance monitor. Each different standby power-off value of electric device is set automatically by using learning function of energy surveillance device. Thus adaptive standby power-off function provides user convenience and it maximizes the energy savings. Also, power consumption monitoring function is helpful to reduce inefficient energy consumption in home. The zigbee throughput simulator is designed to evaluate minimum transmission power and maximum allowable information quantity in the proposed system. The test result of prototype has been satisfied all the requirements. The proposed system has confirmed that can be used as an intelligent energy surveillance system for energy savings in home or office.

Keywords: Energy monitoring system, Energy surveillance system, Energy sensor network, Energy savings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
3604 An Area-Efficient and Low-Power Digital Pulse-Width Modulation Controller for DC-DC Switching Power Converter

Authors: Jingjing Lan, Jun Zhou, Xin Liu

Abstract:

In this paper, a low-power digital controller for DC-DC power conversion was presented. The controller generates the pulse-width modulated (PWM) signal from digital inputs provided by analog-to-digital converter (ADC). An efficient and simple design scheme to develop the control unit was discussed. This method allows minimization of the consumed resources of the chip and it is based on direct digital design approach. In this application, with the proposed scheme, nearly half area and two-third of the power consumption was saved compared to the conventional schemes. This work illustrates the possibility of implementing low-power and area-efficient power management circuit using direct digital design based approach. 

Keywords: Buck converter, DC-DC power conversion, digital control, proportional-integral (PI) controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276
3603 Energy Consumption and Surface Finish Analysis of Machining Ti6Al4V

Authors: Salman Pervaiz, Ibrahim Deiab, Amir Rashid, Mihai Nicolescu, Hossam Kishawy

Abstract:

Greenhouse gases (GHG) emissions impose major threat to global warming potential (GWP). Unfortunately manufacturing sector is one of the major sources that contribute towards the rapid increase in greenhouse gases (GHG) emissions. In manufacturing sector electric power consumption is the major driver that influences CO2 emission. Titanium alloys are widely utilized in aerospace, automotive and petrochemical sectors because of their high strength to weight ratio and corrosion resistance. Titanium alloys are termed as difficult to cut materials because of their poor machinability rating. The present study analyzes energy consumption during cutting with reference to material removal rate (MRR). Surface roughness was also measured in order to optimize energy consumption.

Keywords: Energy Consumption, CO2 Emission, Ti6Al4V.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2794