Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31108
Influence of Driving Strategy on Power and Fuel Consumption of Lightweight PEM Fuel Cell Vehicle Powertrain

Authors: Suhadiyana Hanapi, Alhassan Salami Tijani, W. A. N Wan Mohamed


In this paper, a prototype PEM fuel cell vehicle integrated with a 1 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack as a main power sources has been developed for a lightweight cruising vehicle. The test vehicle is equipped with a PEM fuel cell system that provides electric power to a brushed DC motor. This vehicle was designed to compete with industrial lightweight vehicle with the target of consuming least amount of energy and high performance. Individual variations in driving style have a significant impact on vehicle energy efficiency and it is well established from the literature. The primary aim of this study was to assesses the power and fuel consumption of a hydrogen fuel cell vehicle operating at three difference driving technique (i.e. 25 km/h constant speed, 22-28 km/h speed range, 20-30 km/h speed range). The goal is to develop the best driving strategy to maximize performance and minimize fuel consumption for the vehicle system. The relationship between power demand and hydrogen consumption has also been discussed. All the techniques can be evaluated and compared on broadly similar terms. Automatic intelligent controller for driving prototype fuel cell vehicle on different obstacle while maintaining all systems at maximum efficiency was used. The result showed that 25 km/h constant speed was identified for optimal driving with less fuel consumption.

Keywords: Energy Efficient, Fuel Economy, prototype fuel cell electric vehicles, control/driving technique

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676


[1] Von Helmolt R, Eberle U. Fuel cell vehicles: status 2007. Journal of Power Sources 2007; 165:833-43.
[2] Wilbanks TJ, Greene DL. The importance of advancing technology to america’s energy goals. Energy Policy 2010; 38(8).
[3] Corbo P, Migliardini F, Veneri O. PEFC stacks as power sources for hybrid propulsion systems. International Journal of Hydrogen Energy 2009; 34: 4635-44.
[4] Mora J, Romero L and Ruperez M. Formula zero: Development and kart’s competition driven by PEM fuel cell. Int. J. Hyg Energ 2011; 36 8008-8016.
[5] Jain M, Desai C, Kharma N, Williamson SS. Optimal powertrain component sizing of a fuel cell plug-in hybrid electric vehicle using multi-objective genetic algorithm. IECON, Porto, Portugal; 2009, November 3–5. p. 3741–6.
[6] Ouyang M, Xu L, Li J, Lu L, Gao D, Xie Q. Performance comparison of two fuel cell hybrid buses with different powertrain and energy management strategies. Journal of Power Sources 2006; 163:467-79.
[7] Thounthong P, Chunkag V, Sethakul P, Davat B, Hinaje M. Comparative study of fuel cell vehicle hybridization with battery or super capacitor storage device. IEEE Trans Veh Technol 2009; 58(8):3892–904.
[8] Xu L, Ouyang M, Li J, et al. Optimal sizing of plug-in fuel cell electric vehicles using models of vehicle performance and system cost. Appl Energy 2013; 103:477–87.
[9] Pearre NS, Kempton W, Guensler RL, et al. Electric vehicles: how much range is required for a day’s driving? Transport Res Part C: Emerg Technol 2011; 19(6):1171–84.
[10] Kelly JC, Macdonald JS, Keoleian GA. Time-dependent plug-in hybrid electric vehicle charging based on national driving patterns and demographics. Appl Energy 2012; 94:395–405.
[11] Shiau, Ching-Shin Norman, Kaushal, Nikhil, Hendrickson, Chris T., Peterson, ScottB., Whitacre, JayF., Michalek, Jeremy J. Optimal plug-in hybrid electric vehicle design and allocation for minimum life cycle cost, petroleum consumption, and greenhouse gas emissions. Journal of Mechanical Design 2010; 132 091013—1 — 11.
[12] Traut. E., Cherng. T.W., Hendrickson. C., Michalek. J. U.S. Residential Charging Potential for Plug-in Vehicles, Working Paper, Department of Mechanical Engineering 2013;, Carnegie Mellon University.
[13] Kelly, J.C., MacDonald, J.S., Keoleian, G.A. Time-dependent plug-in hybrid electric vehicle charging based on national driving patterns and demographics. Applied Energy 2012; 94,395–40.
[14] Neubauer, Brooker, Wood. Sensitivity of battery electric vehicle economics to drive patterns, vehicle range, and charge strategies. Journal of Power Sources 2012; 209, p269–277.
[15] Neubauer, J., Brooker, A., Wood, E. Sensitivity of plug-in hybrid electric vehicle economics to drive patterns, electric range, energy management, and charge strategies. Journal of Power Sources 2013; in press.
[16] Raykin, Leon, Mac Lean, Heather L., Roorda, Matthew J. Implications of driving patterns on well-to-wheels performance of plug-in hybrid electric vehicles. Environmental Science and Technology 2013; 46(11),p6363–6370.
[17] C. Cheng, A. McGordon, J. Poxon, R. Jones, P. Jennings, A Model to Investigate the Effects of Driver Behaviour on Hybrid Vehicle Control. 25th World Battery, Hybrid, and Fuel Cell Electric Vehicle Symposium and Exhibition, November 5-9, 2010 (Shenzhen, China).
[18] M. Knowles, H. Scott, D. Baglee, The effect of driving style on electric vehicle performance, economy, and perception, Int. J. Electr. Hybrid Veh. 4 (3) (2012) 228-247.
[19] C. Bingham, C. Walsh, S. Carroll, Impact of driving characteristics on electric vehicle energy consumption and range, IET Intell. Transp. Syst. 6 (1) (2012) 29-35.
[20] Fiat Eco: Drive, Eco-Driving Uncovered: the Benefits and Challenges of Eco- Driving based on the First Study using Real Journey Data, 2010. Available at: Driving%20Uncovered.pdf (accessed September 2015).
[21] D.W. Gao, C. Mi, A. Emadi, Modeling and simulation of electric and hybrid vehicles, Proc. IEEE 95 (4) (2007) 729-745.
[22] J. Larminie, “Electric Vehicle Technology Explained”, John Wiley & Sons, Ltd, 2003.