\r\nformulated where all players compete to transmit at higher

\r\npower. Every base station represents a player in the game.

\r\nThe game is solved by obtaining the Nash equilibrium (NE)

\r\nwhere the game converges to optimality. The proposed method,

\r\nnamed Power Efficient Handover Game Theoretic (PEHO-GT)

\r\napproach, aims to control the handover in dense small cell

\r\nnetworks. Players optimize their payoff by adjusting the

\r\ntransmission power to improve the performance in terms of

\r\nthroughput, handover, power consumption and load balancing.

\r\nTo select the desired transmission power for a player, the payoff

\r\nfunction considers the gain of increasing the transmission power.

\r\nThen, the cell selection takes place by deploying Technique for

\r\nOrder Preference by Similarity to an Ideal Solution (TOPSIS).

\r\nA game theoretical method is implemented for heterogeneous

\r\nnetworks to validate the improvement obtained. Results reveal

\r\nthat the proposed method gives a throughput improvement while

\r\nreducing the power consumption and minimizing the frequent

\r\nhandover.","references":"[1] X. Chu, D. L\u00b4opez-P\u00b4erez, Y. Yang, and F. Gunnarsson, Heterogeneous\r\nCellular Networks: Theory, Simulation and Deployment. Cambridge\r\nUniversity Press, 2013.\r\n[2] M. Alhabo and L. Zhang, \u201cUnnecessary handover minimization in\r\ntwo-tier heterogeneous networks,\u201d in Wireless On-demand Network\r\nSystems and Services (WONS), 2017 13th Annual Conference on. IEEE,\r\n2017, pp. 160\u2013164.\r\n[3] M. Alhabo, L. Zhang, and N. Nawaz, \u201cA trade-off between unnecessary\r\nhandover and handover failure for heterogeneous networks,\u201d in European\r\nWireless 2017; 23th European Wireless Conference; Proceedings of.\r\nVDE, 2017.\r\n[4] M. Alhabo, L. Zhang, and O. Oguejiofor, \u201cInbound handover\r\ninterference-based margin for load balancing in heterogeneous\r\nnetworks,\u201d in Wireless Communication Systems (ISWCS), 2017\r\nInternational Symposium on. IEEE, 2017, pp. 1\u20136.\r\n[5] M. Alhabo and L. Zhang, \u201cLoad-dependent handover margin for\r\nthroughput enhancement and load balancing in hetnets,\u201d IEEE Access,\r\nvol. 6, pp. 67 718\u201367 731, 2018. [6] \u2014\u2014, \u201cMulti-criteria handover using modified weighted topsis methods\r\nfor heterogeneous networks,\u201d IEEE Access, vol. 6, pp. 40 547\u201340 558,\r\n2018.\r\n[7] K. Son, H. Kim, Y. Yi, and B. Krishnamachari, \u201cBase station operation\r\nand user association mechanisms for energy-delay tradeoffs in green\r\ncellular networks,\u201d IEEE journal on selected areas in communications,\r\nvol. 29, no. 8, pp. 1525\u20131536, 2011.\r\n[8] A. Merwaday and I. G\u00a8uvenc\u00b8, \u201cOptimisation of feicic for energy\r\nefficiency and spectrum efficiency in lte-advanced hetnets,\u201d Electronics\r\nLetters, vol. 52, no. 11, pp. 982\u2013984, 2016.\r\n[9] M. Alhabo, L. Zhang, and N. Nawaz, \u201cGra-based handover for dense\r\nsmall cells heterogeneous networks,\u201d IET Communications, 2019.\r\n[10] Y. Li, H. Zhang, J. Wang, B. Cao, Q. Liu, and M. Daneshmand,\r\n\u201cEnergy-efficient deployment and adaptive sleeping in heterogeneous\r\ncellular networks,\u201d IEEE Access, vol. 7, pp. 35 838\u201335 850, 2019.\r\n[11] X. Huang, W. Xu, H. Shen, H. Zhang, and X. You, \u201cUtility-energy\r\nefficiency oriented user association with power control in heterogeneous\r\nnetworks,\u201d IEEE Wireless Communications Letters, vol. 7, no. 4, pp.\r\n526\u2013529, 2018.\r\n[12] C. Yang, J. Li, A. Anpalagan, and M. Guizani, \u201cJoint power coordination\r\nfor spectral-and-energy efficiency in heterogeneous small cell networks:\r\nA bargaining game-theoretic perspective,\u201d IEEE Transactions on\r\nWireless Communications, vol. 15, no. 2, pp. 1364\u20131376, 2015.\r\n[13] R. Tao, W. Liu, X. Chu, and J. Zhang, \u201cAn energy saving small\r\ncell sleeping mechanism with cell range expansion in heterogeneous\r\nnetworks,\u201d IEEE Transactions on Wireless Communications, 2019.\r\n[14] J. Zhang and G. De la Roche, Femtocells: technologies and deployment.\r\nJohn Wiley & Sons, 2011.\r\n[15] G. L. St\u00a8uber, Principles of mobile communication. Springer Science\r\n& Business Media, 2011.\r\n[16] Q.-T. Nguyen-Vuong, Y. Ghamri-Doudane, and N. Agoulmine, \u201cOn\r\nutility models for access network selection in wireless heterogeneous\r\nnetworks,\u201d in Network Operations and Management Symposium, 2008.\r\nNOMS 2008. IEEE. IEEE, 2008, pp. 144\u2013151.\r\n[17] N. Bulusu, D. Estrin, L. Girod, and J. Heidemann, \u201cScalable\r\ncoordination for wireless sensor networks: self-configuring localization\r\nsystems,\u201d in International Symposium on Communication Theory and\r\nApplications (ISCTA 2001), Ambleside, UK, 2001.\r\n[18] H. Nikaid\u02c6o and K. Isoda, \u201cNote on non-cooperative convex game,\u201d\r\nPacific Journal of Mathematics, vol. 5, no. 5, pp. 807\u2013815, 1955.\r\n[19] J. B. Rosen, \u201cExistence and uniqueness of equilibrium points for concave\r\nn-person games,\u201d Econometrica: Journal of the Econometric Society, pp.\r\n520\u2013534, 1965.\r\n[20] H. Kuhn and A. Tucker, \u201cNonlinear programming. sid 481-492 in\r\nproc. of the second berkeley symposium on mathematical statictics and\r\nprobability,\u201d 1951.\r\n[21] A. Mehbodniya, F. Kaleem, K. K. Yen, and F. Adachi, \u201cWireless\r\nnetwork access selection scheme for heterogeneous multimedia traffic,\u201d\r\nIET networks, vol. 2, no. 4, pp. 214\u2013223, 2013.\r\n[22] Y.-M. Wang and Y. Luo, \u201cIntegration of correlations with standard\r\ndeviations for determining attribute weights in multiple attribute decision\r\nmaking,\u201d Mathematical and Computer Modelling, vol. 51, no. 1, pp.\r\n1\u201312, 2010.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 173, 2021"}