

Abstract—Design Patterns have gained more and more

acceptances since their emerging in software development world last
decade and become another de facto standard of essential knowledge
for Object-Oriented Programming developers nowadays.

Their target usage, from the beginning, was for regular computers,
so, minimizing power consumption had never been a concern.
However, in this decade, demands of more complicated software for
running on mobile devices has grown rapidly as the much higher
performance portable gadgets have been supplied to the market
continuously. To get along with time to market that is business
reason, the section of software development for power conscious,
battery, devices has shifted itself from using specific low-level
languages to higher level ones. Currently, complicated software
running on mobile devices are often developed by high level
languages those support OOP concepts. These cause the trend of
embracing Design Patterns to mobile world.

However, using Design Patterns directly in software development
for power conscious systems is not recommended because they were
not originally designed for such environment. This paper
demonstrates the adapted Design Pattern for power limitation system.
Because there are numerous original design patterns, it is not possible
to mention the whole at once. So, this paper focuses only in creating
Energy Conscious version of existing regular "Builder Pattern" to be
appropriated for developing low power consumption software.

Keywords—Design Patterns, Builder Pattern, Low Power
Consumption, Object Oriented Programming, Power Conscious
System, Software.

I. INTRODUCTION
N this era, mobile devices gain much more popular from so
many supportive reasons such as lower price and better

communication infrastructure. However, when mentioning
about mobile equipments, one of the major issues we have to
concern is the battery life. This is why battery-powered
equipments are sometimes called power conscious system or
PCS. Though manufacturers and researchers have tried to
develop various technologies in both hardware and software
to optimize energy from battery for these movable gadgets, to
scope the research, this paper pays attention only in software
section.

At first, software for handheld equipments usually created
by specific low-level language, such as assembly, but later

Kayun Chantarasathaporn is a Ph.D. student in Faculty of Information
Technology, Rangsit University, Muang, Pathumtani, 12000, Thailand (e-
mail:kayun@kayun.com).
 Chonawat Srisa-an is the assistant professor in Faculty of Information
Technolgy, Rangsit University, Muang, Pathumtani, 12000, Thailand (e-mail:
chonawat@rangsit.rsu.ac.th).

higher level languages such as C became more popular. One
of the factors is the marketing reason that needs shorter
development stage for faster launch time. Though everyone
accepts that software created by low-level language can work
fast, its development period is usually too long when
compared with one created by higher level language. Another
reason that made high level language gain more popular is its
much easier reusability. Currently, software running on
mobile devices is much more complicated than one in last
decade but can launch faster because of this reason.

Since 1990, trend of commercial software development has
shifted from procedural programming to object oriented
programming (OOP) as the latter is rather more appropriated
in developing complex application. OOP is also designed for
well support in reusability. From this reason, there have been
many guides for reusing existing good solutions to the
problems. The outstanding one is Design Patterns.

Design Patterns were the collections of existing useful
solutions in OOP software development. It has been well-
known since early 1990s in the presentation in Object-
Oriented Programming, Systems, Languages and Applications
(OOPSLA) conferences by Gang of Four [1]. Later, this
Gang issued a famous book that collected 23 fundamental
design patterns which had been considered as another de facto
standard of OOP professional development.

Design Patterns divided existing patterns to 3 groups [2].
First, Creational Patterns those concerned about how objects
were created. Second, Structural Patterns which interested in
putting objects together in to a larger structure. And, third,
Behavioral Patterns those focused in collaborations among
objects to achieve a particular goal.

Design Patterns have been very useful when applied with
software creation in general environment on regular
computers. However, for mobile systems which are power
concerned environment due to limited life of battery, some
patterns are not quite immediately appropriated because they
were originally not designed for this scarce power situation.

This paper intends to solve this constraint by introducing
Energy Conscious Design Patterns. EC Design Patterns are
based on existing patterns in GOF book. However, since
there are so many patterns, it is not possible to mention all
patterns in 1 article. So, at first, we decided to introduce one
of famous patterns in Creational Patterns for energy conscious
environment that is EC Builder pattern.

The details in this article are as follows. Former studies of
Low Power Consumption Software are introduced. Then, the

Energy Conscious Builder Design Pattern
with C# and Intermediate Language

Kayun Chantarasathaporn, and Chonawat Srisa-an

I

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:7, 2008

2451International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

23
47

.p
df

factors those affect power conscious systems and software
writing strategies in C# for this environment. There will be
some mentions about Design Patterns in general. The
overview of Builder pattern will be pointed. Next, some
techniques for seeking EC Builder pattern will be described.
There are sample codes of EC Builder pattern written in C#
and the intermediate language (IL) generated from it. The
paper will show the result of experiments about energy usage
comparison between regular and EC Builder pattern.

This paper uses term power and energy interchangeably as
Tiwari did [3] except in calculation part.

II. LOW POWERED CONSUMPTION SOFTWARE STUDY
Up to now, there have been quite numerous research

articles pointing at software and its energy consumption.
However, they can be classified to just a few scopes, such as,
power analysis at low level language, compilation techniques
those can create energy optimized codes, strategies for
creation and implementation of software for power concerned
system, boundary of usage time in embedded software, tools
that help automatically find power critical points, and
comparison of energy needed among different writing styles at
the layer of high level language. The samples of researches
just mentioned are as follows.

A well-known article [3] which is considered as the first
research in the field of low power consumption in the software
viewpoint is one from Tiwari and his team. They studied the
power consumption of each major assembly command for
specific CPU, 486DX2-S and the reasons in low level of
software those affect power desire, such as, inter-instruction
and cache miss effects. Though everyone had known that
different commands should need different level of power, this
Tiwari's work clarified how much they were.

Tiwari also recommended compilation techniques for the
focus of low energy in another article [4]. He pointed out that
the compiler should reorder the instructions to reduce
switching since this activity required more power. Also, the
code generated from compiler should choose using register
instead of memory when possible since the registers use less

Studying about the time boundary used in software was
done by Li and Malik [5]. They tried to find the time scope
and critical points of software implementation with the help of
linear programming techniques those applied to the high level
language source code written in C.

Seeking automatic tool that can help code optimization was
studied by Peymandoust et al [6]. Usually, in embedded
system, software should be optimized as much as possible to
consume less power. However, in the past, this process was
done manually. Peymandoust used Profiler to help in finding
critical points in term of basic blocks and proposed Symsoft
which aimed automatically find some way that could produce
acceptable outputs from the same input while using less
power.

There was also a study of comparisons in term of power
consumption and performance between Object-Oriented and
Procedural coding style [7]. The result was as expected that

OOP consumed more resources than procedural one.
However, the study demonstrated that this should be
acceptable when compared with the benefits gaining from
development in OOP style, such as, reusability, member
private management, etc.

III. C# SOFTWARE WRITING STRATEGIES FOR PCS
Though so many times that the outcome of codes written in

high level languages are similar, the power consumption of
each solution is different noticeably. One of the reasons is
power needed for each detail instruction might not be the
same. From our prior research [8], we found that it was true
and we recommended strategies for writing codes in OOP
(with C#) that could lessen required energy.

The summary of recommendation is in Table I.
TABLE I

SUMMARY OF C# CODING STRATEGIES FOR PCS
What to work with Choice 1 Choice 2 Recommend

Group of attributes creation class struct struct
Field static dynamic static
Method static dynamic static

IV. DESIGN PATTERNS

As mentioned in [9], design pattern, in software
engineering viewpoint, is a general repeatable solution to a
common happening problem in software architecture. Design
pattern is not a finished design that can be transformed
directly into code. However, it is a description or template for
how to solve a problem that can be used in many different
situations. Object-oriented design patterns typically show
relationships and interactions between classes or objects,
without specifying the final application classes or objects that
are involved. Though the goal of algorithm and design pattern
is quite similar in trying to solve problems, their details are
different, such as, algorithm try to solve computational
problems not design problems, etc.

In the era that software development is caught up by time to
market, design patterns are the good help. Design pattern can
relieve needless effort in trying to invent the proven existing
solution as design patterns provides tested, proven
development paradigms. Getting along with design pattern is
also useful and easy to understand for successors because it
has already been well-known in developer society.

As mentioned earlier that there are 3 groups of design
patterns classified in [2]. Creational Patterns is the group that
we focus. It contains 5 patterns inside, Factory Method,
Builder, Abstract Factory, Singleton and Prototype. To
improve regular patterns to be able to use with PCS, we pick
Builder pattern as it is a foundation and not too complicated.

V. BUILDER PATTERN
Builder pattern separates the construction of a complex

object from its representation so that the same construction
process can create different representations [10]. The general
class diagram of Builder pattern is shown in Fig. 1 [10].

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:7, 2008

2452International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

23
47

.p
df

Product is a class that has many required methods needed
by all ConcreteBuilders for creating objects. Builder is an
interface for creating specific product from portions of
Product object. ConcreteBuilder constructs and assembles
parts of the product by implementing the Builder interface. It
defines and keeps track of the specific product it creates and
provides method for retrieving that specific one. Director gets
order from user and builds specific products from the
cooperation of Builder and ConcreteBuilder.

Fig. 1 General Class Diagram of Builder pattern

To be clearer, please see Fig. 2 that shows class diagram of

sample Builder pattern and Fig. 3 which is a sequence diagram
(with activations) of this case respectively.

Fig. 2 Class Diagram of sample Builder pattern

The explanations of Fig. 2 are as follows

• Book (is like Product in Fig. 1) is a class containing all
required fields and methods those are needed to be
chosen, the whole or portions, for creating specific
product. Field, in this case, is "private string bookName".
There are 4 methods in Book those are "public void
AddBookCover()", "public void AddBookDetail()",
"public void EncryptBook()" and "public void
PrintBook()".

• BookBuilder (is like Builder in Fig. 1) is an interface that
has methods for assembling specific products. In Fig. 2,
BookBuilder contains "void MakeBook(string
bookName)" and "void PublishBook()" abstract methods.

• EBookBuilder and PaperBookBuilder (are like
ConcreteBuilder in Fig. 1) are classes those implement
BookBuilder interface' methods for building specific
products, eBook and paperBook objects. They also have
methods for returning specific products, those are just
created, which are "public Book GetEBook()" and "public
Book GetPaperBook()", respectively.

• BookDirector (is like Director in Fig. 1) gets order from
user to build specific products, eBook and paperBook
objects, from the cooperation of BookBuilder and
EBookBuilder or PaperBookBuilder.

Fig. 3 Sequence Diagram (with Activations) of sample Builder

pattern

From Fig. 3 which is a sequence diagram for creating
eBook, details of activities are like these

• "bookClient" is any object for starting all activities. It
creates object named "eBookBuilder" from
EBookBuilder.

• "bookClient" creates object of BookDirector, named
"bookDirector", by giving "eBookBuilder" as a
parameter. This object will control creational processes
of eBook.

• "bookClient" orders "bookDirector" to control building
processes by calling "Construct()" method of
"bookDirector".

• "bookDirector" instructs "eBookBuilder" (with
cooperation of "bookBuilder") to assemble eBook by
using "MakeBook(bookName)" and "PublishBook()"
methods.

• "bookClient" can get the completed eBook by calling
"GetEBook()" method of "eBookBuilder".

To create paperBook, processes are similar to eBook's. We

can notice that all essential methods for building any kinds of
book are resided in Book class.

VI. ENERGY CONSCIOUS BUILDER PATTERN SEEKING
As regular Builder pattern was not designed intentionally

for energy limited situation, so, to be able to work well with
such environment, we have to adapt it based on our prior
research about C# software writing strategies for PCS [8].

In our experiment, we have studied several techniques to
improve original code to use least power, but, we choose to
propose just some those are successful or are interested by
developers like these

• Builder Pattern that uses only struct instead of class and
static methods.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:7, 2008

2453International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

23
47

.p
df

• Builder Pattern that uses Director1 class, ConcreteBuilder
struct and Product class with static Product methods.

• Builder Pattern that uses Director struct, ConcreteBuilder
class and Product struct with non-static Product methods.
The diversity of power consumption level is from various

combination of struct / class and static / non-static method as
they need different level of energy [8].

For more information about power consumption of class
and struct, please see Appendix A.

A. Builder Pattern That Uses Only Struct and Static
Methods.

Fig. 4 illustrates class diagram of Builder pattern that use
struct instead of class and static methods. We try this because
most developers think struct is lighter than class while static
method consumes less power than non-static one. By the way,
these assumptions are not absolutely true since struct is value
type and static method consumes a little bit more memory than
non-static in some cases.

Fig. 4 Class Diagram of Builder pattern that uses only struct and

static methods

B. Builder Pattern That Uses Director Class,
ConcreteBuilder Struct and Product Class with Static Product
Methods

We apply both struct and class while use static method in
Product class. Class diagram of this case is shown in Fig. 5.

Fig. 5 Class Diagram of Builder pattern that uses Director Class,

ConcreteBuilder struct and Product class with static Product methods

1 Director, ConcreteBuilder and Product are referred to class diagram in

Fig. 1 which is the standard diagram for representing Builder Pattern.

C. Builder Pattern That Uses Director Struct,
ConcreteBuilder Class and Product Struct with Non-Static
Product Methods

This case, we apply struct to some portions. Its class
diagram is in Fig. 6.

Fig. 6 Class Diagram of Builder pattern that uses Director struct,
ConcreteBuilder class and Product struct with Non-static Product

methods

Fig. 7 Different combination consumes unequal CPU consumption

From our experiments, we tested different component
combination in Builder pattern and got result of unequal CPU
consumption as shown in Fig. 7. We do not mention other
combination in detail in this paper due to space limitation. So,
the results mentioned in this article are the top best and top
worst group in term of energy consumption.

VII. MEASUREMENT AND RESEARCH ENVIRONMENT
Tiwari mentioned in his paper that time the processor used

was directly related to the power it needed [3]. Therefore, to
get the same output from similar essential working steps while
controlling other kinds of element, the shorter the processor
time uses the better performance of the chosen component is -
in term of the power optimization.

About the tool in this research, we developed the software,
TOM - Time Operation Measurement, which circular checked
(every 10 Milliseconds) the timespan the specified process
used. TOM will terminate checking itself when the watched
process ends. The software can snapshot User Processor Time
(UPT), Privileged Processor Time (PPT), Total Processor
Time (TPT) and Memory used by the specific software
process. UPT is the timespan processor uses just for that

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:7, 2008

2454International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

23
47

.p
df

process, PPT is the time processor spends for the operating
system to support that process and the TPT is the summation
of UPT and PPT.

Besides our own tool, the additional tools from CPU maker
and some commercial software are also used. Most of them
are the profiler for CPU and memory. CodeAnalyst from
AMD is another major tool for checking detail tasks related to
CPU. .NET Memory Profiler is another tool for checking
memory usage.

This experiment uses both TOM and other profilers since,
usually, the profilers are good to see detail information but our
research needs both detail and overall result, so, combination
of both can provide better completed result.

The results from the measurement shown in this paper were
done on the system that used AMD Athlon™ XP 1800+ CPU
with 512 MB RAM. The software in the system were regular
Microsoft Windows XP SP2, Microsoft .NET Framework
Redistributable Package 2.0, the codes to be measured and
TOM.

From CPU specification [11], AMD Athlon™ XP 1800+
needs current at 37.7 Ampere with voltage 1.75 Volt. About
the memory, from the datasheet [12], its voltage is 2.5 Volt
while it needs power 2.9 Watt.

Energy consumed by CPU and memory is calculated by
using the same formula

W = PT

W = energy (Joule) P = power (Watt) T = time (Second)

However, for memory, information given by manufacturer
causes us to use additional formula for calculating power.

P = IV

I=current (Ampere) V=voltage (Volt)

VIII. C# AND INTERMEDIATE LANGUAGE (IL) OUTPUT OF
ECBUILDER PATTERN

Under .NET platform, as Fig. 8 depicts, codes written in C#
will be compiled by C# compiler to IL. When user wants to
run this program and if there is no native code available, its IL
will be compiled again, at run time, by JIT compiler which
provides executable native code.

Fig. 8 Two Steps of .NET Compilation

A. C# Code of Builder Pattern that Consumes Least CPU
Using pure class or struct has some limitations. Though

using struct instance takes only 1 step while using class
instance takes 2 (as shown in Fig.A1), since struct instance is
a value type, when it is used it is needed to be copied and if
this copying process is too often, sometimes, using struct can
cost in term of power more than class. With this reason, we
mix together.

Along with class diagram in Fig.6, List 1 is a code of
Builder pattern written in C#. With this combination, Book
struct with non-static method, EBookBuilder and
PaperBookBuilder class with non-static GetEBook() and non-
static GetPaperBook(), and BookDirector struct, our test
demonstrated that it consumes least CPU time.

// Book struct - non-static methods in Book
// EBookBuilder|PaperBookBuilder class
// non-static GetEBook | GetPaperBook method
// BookDirector struct
// NOTE: We wrote double d = 2.0; d = d * 5.0; and
// in methods just for creating some loads for them.
struct Book {
 private string bookName;
 public Book(string bookName) {
 this.bookName = bookName;
 double d = 2.0; d = d * 5.0;
 }
 public void AddBookCover() {
 double d = 2.0; d = d * 5.0;
 }
 public void AddBookDetail() {
 double d = 2.0; d = d * 5.0;
 }
 public void EncryptBook() {
 double d = 2.0; d = d * 5.0;
 }
 public void PrintBook() {
 double d = 2.0; d = d * 5.0;
 }
}
interface BookBuilder {
 void MakeBook(string bookName);
 void PublishBook();
}
class EBookBuilder : BookBuilder {
 private Book eBook;
 public void MakeBook(string bookName) {
 eBook = new Book(bookName);
 eBook.AddBookDetail();
 eBook.AddBookCover();
 }
 public void PublishBook() {
 eBook.EncryptBook();
 }
 public Book GetEBook() {
 double d = 2.0; d = d * 5.0;
 return eBook;
 }
}
class PaperBookBuilder : BookBuilder {
 private Book paperBook;
 public void MakeBook(string bookName) {
 paperBook = new Book(bookName);
 paperBook.AddBookDetail();
 paperBook.AddBookCover();
 }
 public void PublishBook() {
 paperBook.PrintBook();
 }
 public Book GetPaperBook() {
 double d = 2.0; d = d * 5.0;

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:7, 2008

2455International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

23
47

.p
df

 return paperBook;
 }
}
struct BookDirector {
 private BookBuilder bookBuilder;
 public BookDirector(BookBuilder bookBuilder) {
 this.bookBuilder = bookBuilder;
 }
 public void Construct(string bookName) {
 bookBuilder.MakeBook(bookName);
 bookBuilder.PublishBook();
 }
}
public class TestPlainBuilder {
 static void Main(string[] args) {
 BookDirector bookDirector;
 for(double d = 0.0; d < 100000.0; d+=0.01) {
 // Create E-Book
 EBookBuilder eBookBuilder = new EBookBuilder();
 bookDirector = new BookDirector(eBookBuilder);
 bookDirector.Construct("Introduction to C#");
 Book b1 = eBookBuilder.GetEBook();
 // Create Paper Book
 PaperBookBuilder paperBookBuilder = new PaperBookBuilder();
 bookDirector = new BookDirector(paperBookBuilder);
 bookDirector.Construct("Introduction to ASP.NET with C#");
 Book b2 = paperBookBuilder.GetPaperBook();
 }
 }
}

List 1 Sample Code in C# of EC Builder Pattern

B. Partial IL from Builder Pattern
Usually IL of class is larger than struct, if everything inside

is the same, since class has larger overhead. If there is no
constructor, class will have build-in default constructor with 7
byte size while struct will not. General constructor of struct in
List 2 has 31 byte size that is smaller when compared with 39
byte general constructor of class in List 3.

List 2 is partial IL of Book struct with Non-static
AddBookCover() method. In case of Book is class with static
AddBookCover() method, its IL is as shown in List 3 instead.

List 4 shows IL for creating instance of Book struct and
calling 2 non-static methods while List 5 is an IL for creating
instance of Book class and calling 2 static methods
(AddBookCover() and AddBookDetail()).

By the way, using pure struct does not guarantee that the
code will consume less energy as the reason from situation
mentioned in last part.

.class private sequential ansi sealed beforefieldinit Book
 extends [mscorlib]System.ValueType
{
 .field private string bookName
 .method public hidebysig specialname rtspecialname
 instance void .ctor(string bookName) cil managed
 {
 // Code size 31 (0x1f)
 .maxstack 2
 .locals init (float64 V_0)
 IL_0000: nop
 IL_0001: ldarg.0
 IL_0002: ldarg.1
 IL_0003: stfld string Book::bookName
 IL_0008: ldc.r8 2.
 IL_0011: stloc.0
 IL_0012: ldloc.0
 IL_0013: ldc.r8 5.

 IL_001c: mul
 IL_001d: stloc.0
 IL_001e: ret
 } // end of method Book::.ctor
 .method public hidebysig instance void AddBookCover() cil

managed
 {
 // Code size 24 (0x18)
 .maxstack 2
 .locals init (float64 V_0)
 IL_0000: nop
 IL_0001: ldc.r8 2.
 IL_000a: stloc.0
 IL_000b: ldloc.0
 IL_000c: ldc.r8 5.
 IL_0015: mul
 IL_0016: stloc.0
 IL_0017: ret
 } // end of method Book::AddBookCover
...
}
List 2 Partial IL of Book struct and Non-static AddBookCover()

.class private auto ansi beforefieldinit Book
 extends [mscorlib]System.Object
{
 .field private string bookName
 .method public hidebysig specialname rtspecialname
 instance void .ctor(string bookName) cil managed
 {
 // Code size 39 (0x27)
 .maxstack 2
 .locals init (float64 V_0)
 IL_0000: ldarg.0
 IL_0001: call instance void [mscorlib]System.Object::.ctor()
 IL_0006: nop
 IL_0007: nop
 IL_0008: ldarg.0
 IL_0009: ldarg.1
 IL_000a: stfld string Book::bookName
 IL_000f: ldc.r8 2.
 IL_0018: stloc.0
 IL_0019: ldloc.0
 IL_001a: ldc.r8 5.
 IL_0023: mul
 IL_0024: stloc.0
 IL_0025: nop
 IL_0026: ret
 } // end of method Book::.ctor
 .method public hidebysig static void AddBookCover() cil managed
 {
 // Code size 24 (0x18)
 .maxstack 2
 .locals init (float64 V_0)
 IL_0000: nop
 IL_0001: ldc.r8 2.
 IL_000a: stloc.0
 IL_000b: ldloc.0
 IL_000c: ldc.r8 5.
 IL_0015: mul
 IL_0016: stloc.0
 IL_0017: ret
 } // end of method Book::AddBookCover
...
}

List 3 Partial IL of Book class and static AddBookCover()

 .method public hidebysig newslot virtual final
 instance void MakeBook(string bookName) cil managed
{
 // Code size 38 (0x26)
 .maxstack 8
 IL_0000: nop
 IL_0001: ldarg.0

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:7, 2008

2456International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

23
47

.p
df

 IL_0002: ldarg.1
 IL_0003: newobj instance void Book::.ctor(string)
 IL_0008: stfld valuetype Book EBookBuilder::eBook
 IL_000d: ldarg.0
 IL_000e: ldflda valuetype Book EBookBuilder::eBook
 IL_0013: call instance void Book::AddBookDetail()
 IL_0018: nop
 IL_0019: ldarg.0
 IL_001a: ldflda valuetype Book EBookBuilder::eBook
 IL_001f: call instance void Book::AddBookCover()
 IL_0024: nop
 IL_0025: ret
} // end of method EBookBuilder::MakeBook

List 4 Partial IL of creating instance of Book struct and calling non-
static method

.method public hidebysig newslot virtual final
 instance void MakeBook(string bookName) cil managed
{
 // Code size 26 (0x1a)
 .maxstack 8
 IL_0000: nop
 IL_0001: ldarg.0
 IL_0002: ldarg.1
 IL_0003: newobj instance void Book::.ctor(string)
 IL_0008: stfld class Book EBookBuilder::eBook
 IL_000d: call void Book::AddBookDetail()
 IL_0012: nop
 IL_0013: call void Book::AddBookCover()
 IL_0018: nop
 IL_0019: ret
} // end of method EBookBuilder::MakeBook

List 5 Partial IL of creating instance of Book class and calling static
method

IX. RESULTS OF EXPERIMENTS

TOM and AMD profiler give result in the same way.
Results of CPU and RAM consumption from various
combinations of Builder pattern's components measured by
TOM are shown in Table 2. Fig.9 is the result in chart format.

PC-nPM-CBC-nCBM-DC (Book is class with Non-static
method, EBookBuilder and PaperBookBuilder are class with
Non-static methods and BookDirector is class) is regular
Builder pattern. As mentioned earlier, it was not designed for
power optimization, so, its CPU usage in the table is not low.

Fig. 9 CPU Usage Comparison

From our prior study [8], it illustrated that struct consumed
less CPU than class as it was lighter. It is right in regular
manner. However, as struct is value type, if its size is large
and it has to be passed around often, it may consume more
CPU than class which is reference type.

AMD CodeAnalyst shows that ConcreteBuilders
(EBookBuilder & PaperBookBuilder) are portions those
consume much CPU while other parts in Builder pattern do
not require much CPU. One reason is ConcreteBuilder
objects are often used and passed around. With this reason,
for them, being reference type is better than value type. On
the other hand, Director (BookDirector) is not passed much,
so, being struct is appropriated as it is lighter.

The result from TOM shown in Table II and Fig. 9 also
supports these issues as the best 4 builders use
ConcreteBuilder class and Director struct while the worst 4
ones use ConcreteBuilder struct and Director class.

From Table II, the group of good combination consumes
less CPU than regular Builder pattern around 20% while the
group of bad combination consumes more CPU than regular
one also around 20%.

The result from Table II shows that using only struct and
static methods are not the best choice for Builder pattern as it
decreases CPU consumption only around 8%.

Memory usages from all experiments are not much
different. The range is around less than 3%.

UPT User Processor Time
PPT Privilege Processor Time
TPT Total Processor Time
PC Product Class
PS Product Struct
nPM Non-Static Product Method
sPM Static Product Method
CBC Concrete Builder Class
CBS Concrete Builder Struct
nCBM Non-Static Concrete Builder Method
sCBM Static Concrete Builder Method
DC Director Class
DS Director Struct

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:7, 2008

2457International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

23
47

.p
df

TABLE II
CPU TIME AND MEMORY USAGE FROM VARIOUS KIND OF BUILDER

CODE COMPONENT UPT (mSec.) PPT (mSec.) TPT (mSec.) RAM
(kBytes)

CPU
Diff.(%)

RAM
Diff.(%)

PS-nPM-CBC-nCBM-DS 1801.59 31.71 1833.30 4068.80 -22.51 1.13
PS-sPM-CBC-nCBM-DS 1814.61 31.71 1846.32 4089.47 -21.96 1.64
PC-sPM-CBC-sCBM-DS 1826.29 37.72 1864.01 4052.80 -21.21 0.73
PC-sPM-CBC-nCBM-DS 1860.01 38.39 1898.40 4085.47 -19.75 1.54
PS-sPM-CBS-sCBM-DS 2152.43 27.71 2180.13 4113.33 -7.85 2.24

PC-nPM-CBC-nCBM-DC 2317.00 48.74 2365.74 4023.33 0.00 0.00
PS-sPM-CBS-nCBM-DC 2785.00 35.05 2820.06 4155.20 19.20 3.28
PS-nPM-CBS-nCBM-DC 2795.35 39.39 2834.74 4136.67 19.83 2.82
PC-nPM-CBS-nCBM-DC 2927.21 49.07 2976.28 4108.27 25.81 2.11
PC-sPM-CBS-nCBM-DC 2943.23 41.06 2984.29 4145.60 26.15 3.04

Energy usages from both CPU and Ram of various Builder
patterns are demonstrated in Table III while Fig. 10 compares
them.

TABLE III
ENERGY USAGE FROM VARIOUS KIND OF BUILDER

CODE
CHARACTERISTIC

CPU
(Joule)

Mem
(Joule)

Total
(Joule) Diff %

PS-nPM-CBC-nCBM-DS 120.96 0.04 121.00 -22.51
PS-sPM-CBC-nCBM-DS 121.82 0.04 121.86 -21.96
PC-sPM-CBC-sCBM-DS 122.99 0.04 123.03 -21.21
PC-sPM-CBC-nCBM-DS 125.26 0.04 125.30 -19.75
PS-sPM-CBS-sCBM-DS 143.85 0.05 143.89 -7.84
PC-nPM-CBC-nCBM-DC 156.09 0.05 156.14 0.00
PS-sPM-CBS-nCBM-DC 186.07 0.06 186.13 19.21
PS-nPM-CBS-nCBM-DC 187.04 0.06 187.10 19.83
PC-nPM-CBS-nCBM-DC 196.37 0.07 196.44 25.81
PC-sPM-CBS-nCBM-DC 196.90 0.07 196.97 26.15

Fig. 10 Energy Usage Comparison

X. CONCLUSION

Design Patterns are conglomeration of proven solutions for
repeated common object oriented programming problems.
Builder Pattern is one of them. Though all patterns have been
accepted by OOP developers as a great technique, they were
not originally designed for power optimization which is an
essential requirement for mobile devices. This research
focuses in improving Builder Pattern to be appropriated for
power limitation environment. Finally, we found the solution,
Energy Conscious Builder Pattern, which is combination of
Director stuct, ConcreteBuilder class. Our ECBuilder Pattern

consumes less energy than regular Builder Pattern around
20%.

XI. FUTURE WORKS
There are other kinds of Design Patterns those can be

optimized to use less energy to be better used with battery
powered devices. Our research team is going to do these.

APPENDIX A
Usually, class consumes more power than struct does. One

of the reasons is, as shown in Fig.A1, invoking class instance
needs 2 steps of operation while just one is required by struct.
Another reason is class instance is stored in heap which has
Garbage Collector (GC) that surely increases CPU load while.
Though the result of our prior experiment [8] mentioned that
struct consumes less CPU time than class, we have to be
careful when using struct with large sized data. Because
struct is a value type, to pass it around, the system needs to
copy its whole content every moving time. If copying process
of large sized data is too often, energy needed for this process
can be significant and, sometimes, can be more than load of
GC. Microsoft recommended the struct size should be less
than 16 bytes [13].

Fig. A1 Invoking instance of Class and Struct

REFERENCES
[1] E. Gamma, R. Helm, R. Johnson and J. Vlissides The Gang of four

[Online]. Available: http://hillside.net

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:7, 2008

2458International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

23
47

.p
df

[2] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Massachusetts:
Addison-Wesley, 1995.

[3] V. Tiwari, S. Malik, and A.Wolfe. Power analysis of embedded
software: A first step towards software power minimization. In IEEE
Transaction VLSI Systems, December 1994.

[4] V. Tiwari, S. Malik and A. Wolfe. Compilation Techniques for Low
Energy: An Overview. In 1994 Symposium on Low-Power Electronics,
San Diego, CA, October 1994.

[5] Y-T S. Li and S. Malik. Performance Analysis of Embedded Software
Using Implicit Path Enumeration. In IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, December 1997.

[6] Peymandoust, T. Simunic and G.D. Micheli. Low Power Embedded
Software Optimization using Symbolic Algebra. In IEEE Proceeding of
the 2002 Design, Automation and Test in Europe Conference and
Exhibition, 2002.

[7] Chatzigeorgiou and G. Stephanides. Evaluating Performance and Power
of Object-Oriented Vs. Procedural Programming in Embedded
Processors. In Ada-Europe 2002, 2002.

[8] (Journal Online Sources style) K. Chantarasathaporn and C. Srisa-an.
(2006, January). Object-Oriented Programming Strategies in C# for
Power Conscious System. International Journal of Computer Science
[Online]. Volume 1 Number 1. Available:
http://www.enformatika.org/ijcs/v1/v1-1-7.pdf

[9] http://en.wikipedia.org/wiki/Design_pattern_%28computer_science%29
[10] http://www.dofactory.com/Patterns/PatternBuilder.aspx
[11] http://www.amd.com/us-

en/assets/content_type/white_papers_and_tech_docs/24309.pdf
[12] http://www.valueram.com/datasheets/KVR266X64SC25_512.pdf
[13] Kumar, S. Struct in C#. Available:

http://www.codeproject.com/csharp/structs_in_csharp.asp

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:2, No:7, 2008

2459International Scholarly and Scientific Research & Innovation 2(7) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

7,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

23
47

.p
df

