Search results for: antioxidant enzymes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1579

Search results for: antioxidant enzymes

379 The Impact of Alkaline Water Supplemented with Sodium Ascorbate on Glucose and Cortisol Levels in the Blood Serum During Acute Hyperthermic Exposure of White Laboratory Rats

Authors: Valdrina Ajeti, Icko Gjorgoski

Abstract:

Stress can be a reason for some physiological and biological disorders in the body. The antioxidative defense system is necessary for the maintenance of redox homeostasis in organisms. Because of its antioxidant effect, alkaline water (AW) is the focus of scientific interest. Adding AW and co-treatment with sodium ascorbate (SA) is expected for the organism to act preventively to hyperthermic stress. To investigate the effect of AW and SA on glucose and cortisol levels during acute hyperthermic stress, white female Wistar laboratory rats, divided into three groups of 10 individuals, were exposed to heat for 80 min, for 21 days. Acute hyperthermic exposure at 41˚C was a cause for oxidative stress. The first group is the control group, the second group is treated with AW, and the third group with AW and SA. Plasma glucose levels were determined by colorimetric method and cortisol was measured using the enzyme-linked immunosorbent assay method. The comparison of the means was made using the Tukey test. Differences were considered significant at a level of p < 0.05. Our results show that levels of glucose and cortisol have been increased in the group treated with AW on the 21st day after treatment (p < 0.0001), but not on the 7th and 14th day as compared to the control group. Also, co-treatment of animals with AW and SA significantly increased the levels of glucose and cortisol on the 21st day after treatment showing a synergistic effect. The individual action of AW, as well as synergism with SA, caused a high protective effect on oxidative damage.

Keywords: alkaline water, sodium ascorbate, hyperthermic stress, glucose, cortisol

Procedia PDF Downloads 100
378 Acetic Acid Assisted Phytoextraction of Chromium (Cr) by Energy Crop (Arundo donax L.) in Cr Contaminated Soils

Authors: Muhammad Iqbal, Hafiz Muhammad Tauqeer, Hamza Rafaqat, Muhammad Naveed, Muhammad Awais Irshad

Abstract:

Soil pollution with chromium (Cr) has become one of the most important concerns due to its toxicity for humans. To date, various remediation approaches have been employed for the remediation and management of Cr contaminated soils. Phytoextraction is an eco-friendly and emerging remediation approach which has gained attention due to several advantages over conventional remediation approach. The use of energy crops for phytoremediation is an emerging trend worldwide. These energy crops have high tolerance against various environmental stresses, the potential to grow in diverse ecosystems and high biomass production make them a suitable candidate for phytoremediation of contaminated soils. The removal efficiency of plants in phytoextraction depends upon several soil and plant factors including solubility, bioavailability and metal speciation in soils. A pot scale experiment was conducted to evaluate the phytoextraction potential of Arundo donax L. with the application of acetic acid (A.A) in Cr contaminated soils. Plants were grown in pots filled with 5 kg soils for 90 days. After 30 days plants acclimatization in pot conditions, plants were treated with various levels of Cr (2.5 mM, 5 mM, 7.5 mM, 10 mM) and A.A (Cr 2.5 mM + A.A 2.5 mM, Cr 5 mM + A.A 2.5 mM, Cr 7.5 mM + A.A 2.5 mM, Cr 10 mM + A.A 2.5 mM). The application of A.A significantly increased metal uptake and in roots and shoots of A. donax. This increase was observed at Cr 7.5 mM + A.A 2.5 mM but at high concentrations, visual symptoms of Cr toxicity were observed on leaves. Similarly, A.A applications also affect the activities of key enzymes including catalase (CAT), superoxidase dismutase (SOD), and ascorbate peroxidase (APX) in leaves of A. donax. Based on results it is concluded that the applications of A.A acid for phytoextraction is an alternative approach for the management of Cr affected soils and synthetic chelators should be replaced with organic acids.

Keywords: acetic acid, A. donax, chromium, energy crop, phytoextraction

Procedia PDF Downloads 352
377 Effect of Phenolic Compounds on Off-Odor Development and Oxidative Stability of Camel Meat during Refrigerated Storage

Authors: Sajid Maqsood, Aysha Al Rashedi, Aisha Abushelaibi, Kusaimah Manheem

Abstract:

Impact of different natural antioxidants on lipid oxidation, microbial load and sensorial quality in ground camel meat (leg region) during 9 days of refrigerated storage were investigated. Control camel meat showed higher lipid oxidation products (Peroxide value and Thiobarbituric acid reactive substances (TBARS)) during the storage period. Upon addition of different natural antioxidants PV and TBARS were retarded, especially in samples added with tannic acid (TA), catechin (CT) and gallic acid (GA) (p<0.05). Haem iron content decreased with increasing storage period and was found to be lower in samples added with caffeic acid (CA) and gallic acid (GA) at the end of storage period (p<0.05). Furthermore, lower mesophilic bacterial count (MBC) and psychrophilic bacterial counts (PBC) were observed in TA and CT treated samples compared to control and other samples (p<0.05). Camel meat treated with TA and CT also received higher likeness scores for colour, odor and overall appearance compared to control samples (p<0.05). Therefore, adding different natural antioxidants especially TA and CT showed retarding effect on lipid oxidation and microbial growth and were also effective in maintaining sensory attributes (color and odor) of ground camel meat during storage at 4°C. Hence, TA and CT could be considered as the potential natural antioxidant for preserving the quality of the camel meat displayed at refrigerated shelves.

Keywords: natural antioxidants, lipid oxidation, quality, camel meat

Procedia PDF Downloads 401
376 Comparative Proteomic Analysis of Rice bri1 Mutant Leaves at Jointing-Booting Stage

Authors: Jiang Xu, Daoping Wang, Yinghong Pan

Abstract:

The jointing-booting stage is a critical period of both vegetative growth and reproductive growth in rice. Therefore, the proteomic analysis of the mutant Osbri1, whose corresponding gene OsBRI1 encodes the putative BRs receptor OsBRI1, at jointing-booting stage is very important for understanding the effects of BRs on vegetative and reproductive growth. In this study, the proteomes of leaves from an allelic mutant of the DWARF 61 (D61, OsBRI1) gene, Fn189 (dwarf54, d54) and its wild-type variety T65 (Taichung 65) at jointing-booting stage were analysed by using a Q Exactive plus orbitrap mass spectrometer, and more than 3,100 proteins were identified in each sample. Ontology analysis showed that these proteins distribute in various space of the cells, such as the chloroplast, mitochondrion, and nucleus, they functioned as structural components and/or catalytic enzymes and involved in many physiological processes. Moreover, quantitative analysis displayed that 266 proteins were differentially expressed in two samples, among them, 77 proteins decreased and 189 increased more than two times in Fn189 compared with T65, the proteins whose content decreased in Fn189 including b5-like Heme/Steroid binding domain containing protein, putative retrotransposon protein, putative glutaminyl-tRNA synthetase, and higher content proteins such as mTERF, putative Oligopeptidase homologue, zinc knuckle protein, and so on. A former study founded that the transcription level of a mTERF was up-regulated in the leaves of maize seedling after EBR treatment. In our experiments, it was interesting that one mTERF protein increased, but another mTERF decreased in leaves of Fn189 at jointing-booting stage, which suggested that BRs may have differential regulation mechanisms on the expression of various mTERF proteins. The relationship between other differential proteins with BRs is still unclear, and the effects of BRs on rice protein contents and its regulation mechanisms still need further research.

Keywords: bri1 mutant, jointing-booting stage, proteomic analysis, rice

Procedia PDF Downloads 217
375 Modeling of Glycine Transporters in Mammalian Using the Probability Approach

Authors: K. S. Zaytsev, Y. R. Nartsissov

Abstract:

Glycine is one of the key inhibitory neurotransmitters in Central nervous system (CNS) meanwhile glycinergic transmission is highly dependable on its appropriate reuptake from synaptic cleft. Glycine transporters (GlyT) of types 1 and 2 are the enzymes providing glycine transport back to neuronal and glial cells along with Na⁺ and Cl⁻ co-transport. The distribution and stoichiometry of GlyT1 and GlyT2 differ in details, and GlyT2 is more interesting for the research as it reuptakes glycine to neuron cells, whereas GlyT1 is located in glial cells. In the process of GlyT2 activity, the translocation of the amino acid is accompanied with binding of both one chloride and three sodium ions consequently (two sodium ions for GlyT1). In the present study, we developed a computer simulator of GlyT2 and GlyT1 activity based on known experimental data for quantitative estimation of membrane glycine transport. The trait of a single protein functioning was described using the probability approach where each enzyme state was considered separately. Created scheme of transporter functioning realized as a consequence of elemental steps allowed to take into account each event of substrate association and dissociation. Computer experiments using up-to-date kinetic parameters allowed receiving the number of translocated glycine molecules, Na⁺ and Cl⁻ ions per time period. Flexibility of developed software makes it possible to evaluate glycine reuptake pattern in time under different internal characteristics of enzyme conformational transitions. We investigated the behavior of the system in a wide range of equilibrium constant (from 0.2 to 100), which is not determined experimentally. The significant influence of equilibrium constant in the range from 0.2 to 10 on the glycine transfer process is shown. The environmental conditions such as ion and glycine concentrations are decisive if the values of the constant are outside the specified range.

Keywords: glycine, inhibitory neurotransmitters, probability approach, single protein functioning

Procedia PDF Downloads 85
374 The Effect of Curcumin on Cryopreserved Bovine Semen

Authors: Eva Tvrdá, Marek Halenár, Hana Greifová, Alica Mackovich, Faridullah Hashim, Norbert Lukáč

Abstract:

Oxidative stress associated with semen cryopreservation may result in lipid peroxidation (LPO), DNA damage and apoptosis, leading to decreased sperm motility and fertilization ability. Curcumin (CUR), a natural phenol isolated from Curcuma longa Linn. has been presented as a possible supplement for a more effective semen cryopreservation because of its antioxidant properties. This study focused to evaluate the effects of CUR on selected oxidative stress parameters in cryopreserved bovine semen. 20 bovine ejaculates were split into two aliquots and diluted with a commercial semen extender containing CUR (50 μmol/L) or no supplement (control), cooled to 4 °C, frozen and kept in liquid nitrogen. Frozen straws were thawed in a water bath for subsequent experiments. Computer assisted semen analysis was used to evaluate spermatozoa motility, and reactive oxygen species (ROS) generation was quantified by using luminometry. Superoxide generation was evaluated with the NBT test, and LPO was assessed via the TBARS assay. CUR supplementation significantly (P<0.001) increased the spermatozoa motility and provided a significantly higher protection against ROS (P<0.001) or superoxide (P<0.01) overgeneration caused by semen freezing and thawing. Furthermore, CUR administration resulted in a significantly (P<0.01) lower LPO of the experimental semen samples. In conclusion, CUR exhibits significant ROS-scavenging activities which may prevent oxidative insults to cryopreserved spermatozoa and thus may enhance the post-thaw functional activity of male gametes.

Keywords: bulls, cryopreservation, curcumin, lipid peroxidation, reactive oxygen species, spermatozoa

Procedia PDF Downloads 236
373 Improving Lutein Bioavailability by Nanotechnology Applications

Authors: Hulya Ilyasoglu Buyukkestelli, Sedef Nehir El

Abstract:

Lutein is a member of xanthophyll group of carotenoids found in fruits and vegetables. Lutein accumulates in the macula region of the retina and known as macular pigment which absorbs damaging light in the blue wavelengths. The presence of lutein in retina has been related to decreased risk of two common eye diseases, age-related macular degeneration, and cataract. Being a strong antioxidant, it may also have effects on prevention some types of cancer, cardiovascular disease, cognitive dysfunction. Humans are not capable of synthesizing lutein de novo; therefore it must be provided naturally by the diet, fortified foods, and beverages or nutritional supplement. However, poor bioavailability and physicochemical stability limit its usage in the food industry. Poor solubility in digestive fluids and sensitivity to heat, light, and oxygen are both affect the stability and bioavailability of lutein. In this context, new technologies, delivery systems and formulations have been applied to improve stability and solubility of lutein. Nanotechnology, including nanoemulsion, nanocrystal, nanoencapsulation technology and microencapsulation by complex coacervation, spray drying are promising ways of increasing solubilization of lutein and stability of it in different conditions. Bioavailability of lutein is also dependent on formulations used, starch formulations and milk proteins, especially sodium caseinate are found effective in improving the bioavailability of lutein. Designing foods with highly bioavailable and stabile lutein needs knowledge about current technologies, formulations, and further needs. This review provides an overview of the new technologies and formulations used to improve bioavailability of lutein and also gives a future outlook to food researches.

Keywords: bioavailability, formulation, lutein, nanotechnology

Procedia PDF Downloads 354
372 Ability of Gastric Enzyme Extract of Adult Camel to Clot Bovine Milk

Authors: Boudjenah-Haroun Saliha, Isselnane Souad, Nouani Abdelwahab, Baaissa Babelhadj, Mati Abderrahmane

Abstract:

Algeria is experiencing significant development of the dairy sector, where consumption of milk and milk products increased by 2.7 million tons in 2008 to 4,400,000 tons in 2013, and cheese production has reached 1640 tons in the year 2014 with average consumption of 0.7 kg/person/year. Although rennet is still the most used coagulating enzyme in cheese, its production has been growing worldwide shortage. This shortage is primarily due to a growing increase in the production and consumption of cheese, and the inability to increase in parallel the production of rennet. This shortage has caused very large fluctuations in its price). To overcome these obstacles, much research has been undertaken to find effective and competitive substitutes used industrially. For this, the selection of a local production of rennet substitute is desirable. It would allow a permanent supply with limited dependence on imports and price fluctuations. Investigations conducted by our research team showed that extracts coagulants from the stomachs of older camels are characterized by a coagulating power than those from younger camels. The objective of this work is to study the possibility of substituting commercial rennet coagulant by gastric enzymes from adult camels for coagulation bovine milk. Excerpts from the raw camel coagulants obtained are characterized through their teneures proteins and clotting and proteolytic activities. Milk clotting conditions by the action of these extracts were optimized. Milk clotting time all treated with enzyme preparations and under different conditions was calculated. Bovine rennet has been used for comparison. The results show that crude extracts from gastric adult camel can be good substituting bovine rennet.

Keywords: Algeria, camel, cheese, coagulation, gastric extracts, milk

Procedia PDF Downloads 406
371 Antioxidant Face Mask from Purple Sweet Potato (Ipomea Batatas) with Oleum Cytrus

Authors: Lilis Kistriyani, Dine Olisvia, Lutfa Rahmawati

Abstract:

Facial mask is an important part of every beauty treatment because it will give a smooth and gentle effect on the face. This research is done to make edible film that will be applied for face mask. The main ingredient in making this edible film is purple sweet potato powder with the addition of glycerol as plasticizer. One of the ingredients in purple sweet potato is a flavonoid compound. The purpose of this study was to determine the effect of increasing the amount of glycerol to flavonoids release and the effect on the physical properties and biological properties of edible film produced. The stages of this research are the making of edible film, then perform some analysis, among others, spectrophotometer UV-vis analysis to find out how many flavonoids can be released into facial skin, tensile strength and elongation of break analysis, biodegradability analysis, and microbiological analysis. The variation of edible film is the volume of glycerol that is 1 ml, 2 ml, 3 ml. The results of spectrophotometer UV-vis analysis showed that the most flavonoid release concentration is 20.33 ppm in the 2 ml glycerol variation. The best tensile strength value is 8,502 N, and the greatest elongation of break value is 14% in 1 ml glycerol variation. In the biodegradability test, the more volume of glycerol added the faster the edible film is degraded. The results of microbiological analysis showed that purple sweet potato extract has the ability to inhibit the growth of Propionibacterium acnes seen in the presence of inhibiting zone which is 18.9 mm.

Keywords: face mask, edible film, plasticizer, flavonoid

Procedia PDF Downloads 152
370 Characterization of Pectinase from Local Microorganisms to Support Industry Based Green Chemistry

Authors: Sasangka Prasetyawan, Anna Roosdiana, Diah Mardiana, Suratmo

Abstract:

Pectinase are enzymes that hydrolyze pectin compounds. The use of this enzyme is primarily to reduce the viscosity of the beverage thus simplifying the purification process. Pectinase activity influenced by microbial sources . Exploration of two types of microbes that Aspergillus spp. and Bacillus spp. pectinase give different performance, but the use of local strain is still not widely studied. The aim of this research is exploration of pectinase from A. niger and B. firmus include production conditions and characterization. Bacillus firmus incubated and shaken at a speed of 200 rpm at pH variation (5, 6, 7, 8, 9, 10), temperature (30, 35, 40, 45, 50) °C and incubation time (6, 12, 18, 24, 30, 36 ) hours. Media was centrifuged at 3000 rpm, pectinase enzyme activity determined. Enzyme production by A. niger determined to variations in temperature and pH were similar to B. firmus, but the variation of the incubation time was 24, 48, 72, 96, 120 hours. Pectinase crude extract was further purified by precipitation using ammonium sulfate saturation in fraction 0-20 %, 20-40 %, 40-60 %, 60-80 %, then dialyzed. Determination of optimum conditions pectinase activity performed by measuring the variation of enzyme activity on pH (4, 6, 7, 8, 10), temperature (30, 35, 40, 45, 50) °C, and the incubation time (10, 20, 30, 40, 50) minutes . Determination of kinetic parameters of pectinase enzyme reaction carried out by measuring the rate of enzyme reactions at the optimum conditions, but the variation of the concentration of substrate (pectin 0.1 % , 0.2 % , 0.3 % , 0.4 % , 0.5 % ). The results showed that the optimum conditions of production of pectinase from B. firmus achieved at pH 7-8.0, 40-50 ⁰C temperature and fermentation time 18 hours. Purification of pectinase showed the highest purity in the 40-80 % ammonium sulfate fraction. Character pectinase obtained : the optimum working conditions of A. niger pectinase at pH 5 , while pectinase from B. firmus at pH 7, temperature and optimum incubation time showed the same value, namely the temperature of 50 ⁰C and incubation time of 30 minutes. The presence of metal ions can affect the activity of pectinase , the concentration of Zn 2 + , Pb 2 + , Ca 2 + and K + and 2 mM Mg 2 + above 6 mM inhibit the activity of pectinase .

Keywords: pectinase, Bacillus firmus, Aspergillus niger, green chemistry

Procedia PDF Downloads 342
369 Dietary Effect of Probiotic Bacteria, Bacillus amyloliquefaciens JFP-2 Isolate from Jeju Island`s Traditional Fermented Food, on Innate Immune Response of Oplegnathus fasciatus Challenged with Vibrio anguillarum

Authors: Dong Hwi Kim, Dharaneedharan Subramanian, So Hyun Park, Ha-Ri Choi, Ji-Hyung Kim, Dong-Hoon Lee, Moon Soo Heo

Abstract:

The present study was performed to evaluate the use of Bacillus amyloliquefaciens JFP-2 isolated from a traditional fermented sea food, as probiotic bacteria in the diets for Rock-bream, Oplegnathus faciatus. A total of 180 fish (187.4 ± 2.7 g) were divided into two groups, control (C) and probiotic (P) group (90 fish per group) in triplicate. C group was fed with basal diet without probiotic, while P group was fed with B. amyloliquefaciens spores at concentration of 1.4 x 106 colony forming units per gram (CFU/g) of feed. After two months of feeding experiments, P group fish showed significant improvements in body weight (BW), weight gain (WG), specific growth rate (SGR) and food conversion ratio (FCR) compared with C group. Also, bi-weekly assessment of serum protein, glucose, fatty acid profile showed a significant increase in probiotic fed fish than that of control fish group. Similar increase in serum antioxidant and lysozyme activity was found in probiotic fed fish group. Twenty days challenge experiment shows decrease mortality in probiotic fed fish group when compared with that of control group. Hence, these results indicate that the use of B. amyloliquefaciens JFP-2 as a feed supplement, is beneficial to improve the health status of Oplegnathus fasciatus challenged with Vibrio anguillarum.

Keywords: Bacillus amyloliquefaciens, Oplegnathus fasciatus, probiotic feed, rock bream

Procedia PDF Downloads 231
368 Distribution of Cytochrome P450 Gene in Patients Taking Medical Cannabis

Authors: Naso Isaiah Thanavisuth

Abstract:

Introduction: Medical cannabis can be used for treatment, including anorexia, pain, inflammation, multiple sclerosis, Parkinson's disease, epilepsy, cancer, and metabolic syndrome-related disorders. However, medical cannabis leads to adverse effects (AEs), which is delta-9-tetrahydrocannabinol (THC). In previous studies, the major of THC metabolism enzymes are CYP2C9. Especially, the variation of CYP2C9 gene consist of CYP2C9*2 on exon 3 (C430T) (Arg144Cys) and CYP2C9*3 on exon 7 (A1075C) (Ile359Leu) to decrease enzyme activity. Notwithstanding, there is no data describing whether the variant of CYP2C9 genes are a pharmacogenetics marker for prediction of THC-induced AEs in Thai patients. Objective: We want to investigate the association between CYP2C9 gene and THC-induced AEs in Thai patients. Method: We enrolled 39 Thai patients with medical cannabis treatment consisting of men and women who were classified by clinical data. The quality of DNA extraction was assessed by using NanoDrop ND-1000. The CYP2C9*2 and *3 genotyping were conducted using the TaqMan real time PCR assay (ABI, Foster City, CA, USA). Results: All Thai patients who received the medical cannabis consist of twenty four (61.54%) patients who were female and fifteen (38.46%) were male, with age range 27- 87 years. Moreover, the most AEs in Thai patients who were treated with medical cannabis between cases and controls were tachycardia, arrhythmia, dry mouth, and nausea. Particularly, thirteen (72.22%) medical cannabis-induced AEs were female and age range 33 – 69 years. In this study, none of the medical cannabis groups carried CYP2C9*2 variants in Thai patients. The CYP2C9*3 variants (*1/*3, intermediate metabolizer, IM) and (*3/*3, poor metabolizer, PM) were found, three of thirty nine (7.69%) and one of thirty nine (2.56%) , respectively. Conclusion: This is the first study to confirm the genetic polymorphism of CYP2C9 and medical cannabis-induced AEs in the Thai population. Although, our results indicates that there is no found the CYP2C9*2. However, the variation of CYP2C9 allele might serve as a pharmacogenetics marker for screening before initiating the therapy with medical cannabis for prevention of medical cannabis-induced AEs.

Keywords: CYP2C9, medical cannabis, adverse effects, THC, P450

Procedia PDF Downloads 79
367 21st Century Biotechnological Research and Development Advancements for Industrial Development in India

Authors: Monisha Isaac

Abstract:

Biotechnology is a discipline which explains the use of living organisms and systems to construct a product, or we can define it as an application or technology developed to use biological systems and organisms processes for a specific use. Particularly, it includes cells and its components use for new technologies and inventions. The tools developed can be further used in diverse fields such as agriculture, industry, research and hospitals etc. The 21st century has seen a drastic development and advancement in biotechnology in India. Significant increase in Government of India’s outlays for biotechnology over the past decade has been observed. A sectoral break up of biotechnology-based companies in India shows that most of the companies are agriculture-based companies having interests ranging from tissue culture to biopesticides. Major attention has been given by the companies in health related activities and in environmental biotechnology. The biopharmaceutical, which comprises of vaccines, diagnostic, and recombinant products is the most reliable and largest segment of the Indian Biotech industry. India has developed its vaccine markets and supplies them to various countries. Then there are the bio-services, which mainly comprise of contract researches and manufacturing services. India has made noticeable developments in the field of bio industries including manufacturing of enzymes, biofuels and biopolymers. Biotechnology is also playing a crucial and significant role in the field of agriculture. Traditional methods have been replaced by new technologies that mainly focus on GM crops, marker assisted technologies and the use of biotechnological tools to improve the quality of fertilizers and soil. It may only be a small contributor but has shown to have huge potential for growth. Bioinformatics is a computational method which helps to store, manage, arrange and design tools to interpret the extensive data gathered through experimental trials, making it important in the design of drugs.

Keywords: biotechnology, advancement, agriculture, bio-services, bio-industries, bio-pharmaceuticals

Procedia PDF Downloads 204
366 Bacillus thuringiensis CHGP12 Uses a Multifaceted Strategy to Suppress Fusarium Wilt of Chickpea and to Enhance the Total Biomass of Chickpea Plants

Authors: Muhammad Naveed Aslam, Rida Fatima, Anam Moosa, Muhammad Taimoor Shakeel

Abstract:

Bacillus strains produce antifungal secondary metabolites making them potential candidates for suppressing Fusarium wilt of chickpea disease. In this study, eighteen Bacillus strains were evaluated for their antagonistic effect against Fusarium oxysporum f. sp. ciceris causing Fusarium wilt of chickpea disease. In a direct antifungal assay, thirteen strains showed significant inhibition zones while the remaining five strains did not produce inhibition zones of FOC. Bacillus thuringiensis CHGP12 was the most promising strain exhibiting the highest inhibition of FOC. Antifungal lipopeptides were extracted from CHGP12 strain which showed significant inhibition of the pathogen. Liquid chromatography mass spectrometry (LCMS) analysis revealed that CHGP12 was positive for the presence of iturin, fengycin, surfactin, bacillaene, bacillibactin, plantazolicin, and bacilysin. CHGP12 was tested for biochemical determinants in an in vitro qualitative test where it showed the ability to produce lipase, amylase, cellulase, protease, siderophores, and indole 3-acetic acid (IAA). Furthermore, in a greenhouse experiment CHGP12 also showed a significant decrease in the disease severity in treated plants compared to control. Moreover, CHGP12 also exhibited a significant increase in plant growth parameters viz, root and shoot growth parameters, stomatal conductance, and photosynthesis rate. Conclusively, our findings present the promising potential of Bacillus strain CHGP12 to suppress Fusarium wilt of chickpea and to promote plant growth.

Keywords: liquid chromatography mass spectrometry, growth promotion, antagonism, hydrolytic enzymes, inhibition, lipopeptides.

Procedia PDF Downloads 97
365 Phytochemical Screening and Identification of Anti-Biological Activity Properties of Pelargonium graveolens

Authors: Anupalli Roja Rani, Saraswathi Jaggali

Abstract:

Rose-scented geranium (Pelargonium graveolens L’Hér.) is an erect, much-branched shrub. It is indigenous to various parts of southern Africa, and it is often called Geranium. Pelargonium species are widely used by traditional healers in the areas of Southern Africa by Sotho, Xhosa, Khoi-San and Zulus for its curative and palliative effects in the treatment of diarrhea, dysentery, fever, respiratory tract infections, liver complaints, wounds, gastroenteritis, haemorrhage, kidney and bladder disorders. We have used Plant materials for extracting active compounds from analytical grades of solvents methanol, ethyl acetate, chloroform and water by a soxhlet apparatus. The phytochemical screening reveals that extracts of Pelargonium graveolens contains alkaloids, glycosides, steroids, tannins, saponins and phenols in ethyl acetate solvent. The antioxidant activity was determined using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) bleaching method and the total phenolic content in the extracts was determined by the Folin–Ciocalteu method. Due to the presence of different phytochemical compounds in Pelargonium the anti-microbial activity against different micro-organisms like E.coli, Streptococcus, Klebsiella and Bacillus. Fractionation of plant extract was performed by column chromatography and was confirmed with HPLC analysis, NMR and FTIR spectroscopy for the compound identification in different organic solvent extracts.

Keywords: Pelargonium graveolens L’Hér, DPPH, micro-organisms, HPLC analysis, NMR, FTIR spectroscopy

Procedia PDF Downloads 460
364 Effect of Visnagin on Altered Steroidogenesis and Spermatogenesis, and Testicular Injury Induced by the Heavy Metal Lead

Authors: Saleh N. Maodaa

Abstract:

Background: Lead (Pb) is an environmental pollutant causing serious health problems, including impairment of reproduction. Visnagin (VIS) is a furanochromone with promising antioxidant and anti-inflammatory effects; however, its protective efficacy against Pb toxicity has not been investigated. Objective: This study evaluated the protective effect of VIS on Pb reproductive toxicity, impaired steroidogenesis and spermatogenesis, oxidative stress and inflammation. Methods: Rats received VIS (30 or 60 mg/kg) and 50 mg/kg lead acetate for 3 weeks, and blood and testes samples were collected. Results: Pb intoxication impaired the pituitary-testicular axis (PTA), manifested by the decreased serum levels of gonadotropins and testosterone. Pb decreased sperm count, motility and viability, increased sperm abnormalities, and downregulated the steroidogenesis markers StAR, CYP17A1, 3β-HSD and 17β-HSD in the testis of rats. VIS significantly increased serum gonadotropins and testosterone, alleviated sperm parameters and upregulated steroidogenesis. In addition, VIS decreased pro-inflammatory cytokines, testicular lipid peroxidation and DNA fragmentation, downregulated Bax, and enhanced antioxidants and Bcl-2 Conclusion: These results demonstrate the protective effect of VIS against Pb reproductive toxicity in rats. VIS improved serum gonadotropins and testosterone, enhanced steroidogenesis and spermatogenesis, and attenuated oxidative injury, inflammation and apoptosis. Therefore, VIS is a promising candidate for the protection against Pb-induced reproduction impairment.

Keywords: pituitary-gonadal axis, cytokines, DNA damage, apoptosis

Procedia PDF Downloads 59
363 Identification of Phenolic Compounds with Antibacterial Activity in Raisin Extract

Authors: Yousef M. Abouzeed A. Elfahem, F. Zgheel, M. A. Saad, Mohamed O. Ahmed

Abstract:

The bioactive properties of phytochemicals indicate their potential as natural drug products to prevent and treat human disease; in particular, compounds with antioxidant and antimicrobial activities may represent a novel class of safe and effective drugs. Following desiccation, grapes (Vitis vinifera) become more resistant to microbial-based degradation, suggesting that raisins may be a source of antimicrobial compounds. To investigate this hypothesis, total phenolic extracts were obtained from common raisins, local market-sourced. The acetone extract was tested for antibacterial activity against four prevalent bacterial pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella spp. and Escherichia coli). Antibiotic sensitivity and the Minimum Inhibitory Concentration (MIC) were determined for each bacterium. High performance liquid chromatography was used to identify compounds in the total phenolic extract. The raisin phenolic extract inhibited growth of all the tested bacteria; the greatest inhibitive effect (normalized to cefotaxime sodium control antibiotic) occurred against P. aeruginosa, followed by S. aureus > Salmonella spp.= E. coli. The phenolic extracts contained the bioactive compounds catechin, quercetin, and rutin. Thus, phytochemicals in raisin extract have antibacterial properties; this plant-based extract, or its bioactive constituents, may represent a promising natural preservative or antimicrobial agent for the food industry or anti-infective drug.

Keywords: Vitis vinifera raisin, extraction, phenolic compounds, antibacterial activity

Procedia PDF Downloads 578
362 Effects of Live Yeast Supplementation to Reduce Oxidative Stress and Increase Lactation Performance of Dairy Cattle during the Summer Season

Authors: Ahmad Nawid Mirzad, Akira Goto, Takuto Endo, Hitoshi Ano, Hiromu Katamoto, Takenori Yamauchi

Abstract:

The objective of this study was to evaluate the effects of live yeast supplementation on oxidative stress biomarker and antioxidant vitamin levels as well as lactation performance in Holstein Friesian cows during the summer season in Fukuoka prefecture. Sixteen lactating cows weighing 707.50 ± 13.09 kg (Mean ± SE) were used and randomly assigned to either supplemented (n = 8) or control (n = 8) group. The cows in supplemented group were administered with live yeast product at 10 g/d per cow from middle of July to middle of September for eight weeks. In treatment group, serum levels of derivatives of reactive oxygen metabolites (d-ROMs) were lower at week six. In addition, serum levels of glucose and retinol were higher at week eight and those of α-tocopherol were higher at week 2 in treatment group. During study period daily average milk yield decreased in both groups. Daily average milk yield 63 days after the onset of supplementation in treatment and control groups were 23.5 and 22.2 kg, respectively. The reduction rate of milk yield in treatment group tended to be lower (17.6 vs. 20.0%). These results suggest that live yeast supplementation may reduce oxidative stress and improve energy metabolism in lactating dairy cows during the summer season.

Keywords: cow, live yeast, milk, oxidative stress, summer season

Procedia PDF Downloads 131
361 Optimization and Kinetic Analysis of the Enzymatic Hydrolysis of Oil Palm Empty Fruit Bunch To Xylose Using Crude Xylanase from Trichoderma Viride ITB CC L.67

Authors: Efri Mardawati, Ronny Purwadi, Made Tri Ari Penia Kresnowati, Tjandra Setiadi

Abstract:

EFB are mainly composed of cellulose (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). The palm oil empty fruit bunches (EFB) is the lignosellulosic waste from crude palm oil industries mainly compose of (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). Xylan, a polymer made of pentose sugar xylose and the most abundant component of hemicellulose in plant cell wall. Further xylose can be used as a raw material for production of a wide variety of chemicals such as xylitol, which is extensively used in food, pharmaceutical and thin coating applications. Currently, xylose is mostly produced from xylan via chemical hydrolysis processes. However, these processes are normally conducted at a high temperature and pressure, which is costly, and the required downstream processes are relatively complex. As an alternative method, enzymatic hydrolysis of xylan to xylose offers an environmentally friendly biotechnological process, which is performed at ambient temperature and pressure with high specificity and at low cost. This process is catalysed by xylanolytic enzymes that can be produced by some fungal species such as Aspergillus niger, Penicillium crysogenum, Tricoderma reseei, etc. Fungal that will be used to produce crude xylanase enzyme in this study is T. Viride ITB CC L.67. It is the purposes of this research to study the influence of pretreatment of EFB for the enzymatic hydrolysis process, optimation of temperature and pH of the hydrolysis process, the influence of substrate and enzyme concentration to the enzymatic hydrolysis process, the dynamics of hydrolysis process and followingly to study the kinetics of this process. Xylose as the product of enzymatic hydrolysis process analyzed by HPLC. The results show that the thermal pretreatment of EFB enhance the enzymatic hydrolysis process. The enzymatic hydrolysis can be well approached by the Michaelis Menten kinetic model, and kinetic parameters are obtained from experimental data.

Keywords: oil palm empty fruit bunches (EFB), xylose, enzymatic hydrolysis, kinetic modelling

Procedia PDF Downloads 362
360 Genetic and Virulence Diversity among Alternaria carthami Isolates of India

Authors: Garima Anand, Rupam Kapoor

Abstract:

Alternaria leaf spot caused by Alternaria carthami is one of the most devastating diseases of safflower. It has resulted in huge losses in crop production and cultivation leading to a fall out of India’s rank as the leading producer of safflower in the world. Understanding the diversity of any pathogen is essential for its management and for the development of disease control strategies. The diversity of A. carthami was therefore analysed on the basis of biochemical, pathogenicity and genetic lines using ISSR markers. Collections and isolations of 95 isolates of A. carthami were made from major safflower producing states of India. Virulence was analysed to evaluate the pathogenic potential of these isolates. The isolates from Bijapur, Dharwad districts (Karnataka), and Parbhani and Solapur districts (Maharashtra) were found to be highly virulent. The virulence assays showed low virulence levels (42%) for the largest part of the population. Biochemical characterization to assess aggressiveness of these isolates was done by estimating the activity of cell wall degrading enzymes where isolates from districts Dharwad, Bijapur of Karnataka and districts Parbhani and Latur of Maharashtra were found to be most aggressive. Genetic diversity among isolates of A. carthami was determined using eighteen ISSR markers. Distance analysis using neighbour joining method and PCoA analysis of the ISSR profiles divided the isolates into three sub-populations. The most virulent isolates clustered in one group in the dendrogram. The study provided no evidence for geographical clustering indicating that isolates are randomly spread across the states, signifying the high potential of the fungus to adapt to diverse regions. The study can, therefore, aid in the breeding and deployment of A. carthami resistant safflower varieties and in the management of Alternaria leaf spot disease.

Keywords: alternaria leaf spot, genetic diversity, pathogenic potential, virulence

Procedia PDF Downloads 228
359 Study of Virus/es Threatening Large Cardamom Cultivation in Sikkim and Darjeeling Hills of Northeast India

Authors: Dharmendra Pratap

Abstract:

Large Cardamom (Amomum subulatum), family Zingiberaceae is an aromatic spice crop and has rich medicinal value. Large Cardamom is as synonymous to Sikkim as Tea is to Darjeeling. Since Sikkim alone contributes up to 88% of India's large cardamom production which is the world leader by producing over 50% of the global yield. However, the production of large cardamom has declined almost to half since last two decade. The economic losses have been attributed to two viral diseases namely, chirke and Foorkey. Chirke disease is characterized by light and dark green streaks on leaves. The affected leaves exhibit streak mosaic, which gradually coalesce, turn brown and eventually dry up. Excessive sprouting and formation of bushy dwarf clumps at the base of mother plants that gradually die characterize the foorkey disease. In our surveys in Sikkim–Darjeeling hill area during 2012-14, 40-45% of plants were found to be affected with foorkey disease and 10-15% with chirke. Mechanical and aphid transmission study showed banana as an alternate host for both the disease. For molecular identification, total genomic DNA and RNA was isolated from the infected leaf tissues and subjected to Rolling circle amplification (RCA) and RT-PCR respectively. The DNA concatamers produced in the RCA reaction were monomerized by different restriction enzymes and the bands corresponding to ~1 kb genomes were purified and cloned in the respective sites. The nucleotide sequencing results revealed the association of Nanovirus with the foorkey disease of large cardamom. DNA1 showed 74% identity with Replicase gene of FBNYV, DNA2 showed 77% identity with the NSP gene of BBTV and DNA3 showed 74% identity with CP gene of BBTV. The finding suggests the presence of a new species of nanovirus associated with foorkey disease of large cardamom in Sikkim and Darjeeling hills. The details of their epidemiology and other factors would be discussed.

Keywords: RCA, nanovirus, large cardamom, molecular virology and microbiology

Procedia PDF Downloads 473
358 Protection against Sodium Arsenate Induced Fetal Toxicity in Albino Mice by Vitamin C and E

Authors: Fariha Qureshi, Mohammad Tahir

Abstract:

Epidemiological evidences indicated that arsenic contamination in drinking water increased the incidence of spontaneous abortion, stillbirth and premature babies in pregnant women. This study was designed to investigate the protective role of vitamin C&E against sodium arsenate induced fetal toxicity in albino mice. Twenty-four pregnant albino mice of BALB/c strain were randomly divided into 4 groups having 6 animals in each. Group A1 served as control and was injected with 0.1ml/kg/day distilled water I/P for 18 days. Groups A2,A3 & A4 received single I/P injection of sodium arsenate 35mg/kg on 8th gestational day, whereas groups A3 and A4 were also given Vitamin C and E by I/P injection, 9 mg/kg/day and 15 mg/kg/day respectively, starting from 8th GD and continued for the rest of the pregnancy period. The early implantation sites, fetal resorptions, weight of live fetuses and crown rump length were recorded. Gross morphological examination was carried out for malformations. Fetal kidneys were extracted for histological and micrometric analysis. Group A2 exhibited an increased incidence of abortion, fetal resorptions, significant decrease in number of litter and fetal weight; the difference of means was statistically significant among the groups (p<0.000). In group A2 fetal kidneys presented glomerulonephritis with acute tubular necrotic changes and interstitial fibrosis. Groups A3&A4 showed statistically significant improvement in these parameters. The results revealed the antioxidant potential of Vitamin C and E in protecting against arsenic induced fetal toxicity in mice.

Keywords: fetal toxicity, fetal resorptions, interstitial fibrosis, tocopherol

Procedia PDF Downloads 235
357 Information Visualization Methods Applied to Nanostructured Biosensors

Authors: Osvaldo N. Oliveira Jr.

Abstract:

The control of molecular architecture inherent in some experimental methods to produce nanostructured films has had great impact on devices of various types, including sensors and biosensors. The self-assembly monolayers (SAMs) and the electrostatic layer-by-layer (LbL) techniques, for example, are now routinely used to produce tailored architectures for biosensing where biomolecules are immobilized with long-lasting preserved activity. Enzymes, antigens, antibodies, peptides and many other molecules serve as the molecular recognition elements for detecting an equally wide variety of analytes. The principles of detection are also varied, including electrochemical methods, fluorescence spectroscopy and impedance spectroscopy. In this presentation an overview will be provided of biosensors made with nanostructured films to detect antibodies associated with tropical diseases and HIV, in addition to detection of analytes of medical interest such as cholesterol and triglycerides. Because large amounts of data are generated in the biosensing experiments, use has been made of computational and statistical methods to optimize performance. Multidimensional projection techniques such as Sammon´s mapping have been shown more efficient than traditional multivariate statistical analysis in identifying small concentrations of anti-HIV antibodies and for distinguishing between blood serum samples of animals infected with two tropical diseases, namely Chagas´ disease and Leishmaniasis. Optimization of biosensing may include a combination of another information visualization method, the Parallel Coordinate technique, with artificial intelligence methods in order to identify the most suitable frequencies for reaching higher sensitivity using impedance spectroscopy. Also discussed will be the possible convergence of technologies, through which machine learning and other computational methods may be used to treat data from biosensors within an expert system for clinical diagnosis.

Keywords: clinical diagnosis, information visualization, nanostructured films, layer-by-layer technique

Procedia PDF Downloads 305
356 Electrospun Alginate Nanofibers Containing Spirulina Extract Double-Layered with Polycaprolactone Nanofibers

Authors: Seon Yeong Byeon, Hwa Sung Shin

Abstract:

Nanofibrous sheets are of interest in the beauty industries due to the properties of moisturizing, adhesion to skin and delivery of nutrient materials. The benefit and function of the cosmetic products should not be considered without safety thus a non-toxic manufacturing process is ideal when fabricating the products. In this study, we have developed cosmetic patches consisting of alginate and Spirulina extract, a marine resource which has antibacterial and antioxidant effects, without addition of harmful cross-linkers. The patches obtained their structural stabilities by layer-upon-layer electrospinning of an alginate layer on a formerly spread polycaprolactone (PCL) layer instead of crosslinking method. The morphological characteristics, release of Spirulina extract, water absorption, skin adhesiveness and cytotoxicity of the double-layered patches were assessed. The image of scanning electron microscopy (SEM) showed that the addition of Spirulina extract has made the fiber diameter of alginate layers thinner. Impregnation of Spirulina extract increased their hydrophilicity, moisture absorption ability and skin adhesive ability. In addition, wetting the pre-dried patches resulted in releasing the Spirulina extract within 30 min. The patches were detected to have no cytotoxicity in the human keratinocyte cell-based MTT assay, but rather showed increased cell viability. All the results indicate the bioactive and hydro-adhesive double-layered patches have an excellent applicability to bioproducts for personal skin care in the trend of ‘A mask pack a day’.

Keywords: alginate, cosmetic patch, electrospun nanofiber, polycaprolactone, Spirulina extract

Procedia PDF Downloads 318
355 Biomphalaria alexandrina Snail as a Bio-Indicator of Pollution With Manganese Metal and Its Effect on Physiological, Immunological, Histopathological Parameters and Larvicidal Potencies

Authors: Amina M. Ibrahim, Ahmed A. Abdel-Haleem, Rania G. Taha

Abstract:

Metal pollution results in many dangerous consequences to the environment and human health due to the bioaccumulation in their tissues. The present study aims to measure the bioaccumulation factor of the Manganese (Mn) heavy metal in Biomphlaria alexandrina snails' tissues and water samples. The present results showed the concentration of Mn heavy metal in water (87.5 mg/l) and its bioaccumulation factor in Helisoma duryi tissue was higher than that in tissues of Physa acuta and B. alexandrina snails. Results showed that 87.5 mg/l Mn concentration had miracidial and cercaricidal activities. Also, this concentration decreased the mean total number of the hemocytes after exposure for 24h or 48h, while increased both the mean mortality and phagocytic indices of the hemocytes of exposed snails. It caused alterations in the cytomorphology of the hemocytes of exposed snails after 24 or 48h, where, the granulocytes had irregular cell membrane, and forming pseudopodia. Besides, both levels of Testosterone (T) and Estradiol (E) were increased after exposure to 87.5mg/l Mn metal compared to the control group. Also, it increased MDA (Malonaldehyde) and TAC (Total antioxidant capacity) contents, while, decreased SOD (superoxide dismutase). Besides, it caused great histopathological damages in both hermaphrodite and digestive glands, represented in the degeneration of the gonadal, digestive, secretory cells and the connective tissues. Therefore, B. alexandrina might be used as sensitive bio-indicator of pollution with Mn heavy metal to avoid ethics rules; beside they are easily available and large in number.

Keywords: manganese metal, B. alexandrina, hormonal alterations, histopathology

Procedia PDF Downloads 27
354 Biosynthesis of Healthy Secondary Metabolites in Olive Fruit in Response to Different Agronomic Treatments

Authors: Anna Perrone, Federico Martinelli

Abstract:

Olive fruit is well-known for the high content in secondary metabolites with high interest at nutritional, nutraceutical, antioxidant, and healthy levels. The content of secondary metabolites in olive at harvest may be affected by different water regimes, with significant effects on olive oil composition and quality and, consequently, on its healthy and nutritional features. In this work, a summary of several research studies dealing with the biosynthesis of healthy and nutraceutical metabolites of the secondary metabolism in olive fruit will be reported. The phytochemical findings have been correlated with the expression of key genes involved in polyphenol, terpenoid, and carotenoid biosynthesis and metabolism in response to different development stages and water regimes. Flavonoids were highest in immature fruits, while anthocyanins increased at ripening. In epicarp tissue, this was clearly associated with an up-regulation of the UFGT gene. Olive fruits cultivated under different water regimes were analyzed by metabolomics. This method identified several hundred metabolites in the ripe mesocarp. Among them, 46 were differentially accumulated in the comparison between rain-fed and irrigated conditions. Well-known healthy metabolites were more abundant at a higher level of water regimes. Increased content of polyphenols was observed in the rain-fed fruit; particularly, anthocyanin concentration was higher at ripening. Several secondary metabolites were differentially accumulated between different irrigation conditions. These results showed that these metabolic approaches could be efficiently used to determine the effects of agronomic treatments on olive fruit physiology and, consequently, on nutritional and healthy properties of the obtained extra-virgin olive oil.

Keywords: olea europea, anthocyanins, polyphenols, water regimes

Procedia PDF Downloads 115
353 Formulation and Anticancer Evaluation of Beta-Sitosterol in Henna Methanolic Extract Embedded in Controlled Release Nanocomposite

Authors: Sanjukta Badhai, Durga Barik, Bairagi C. Mallick

Abstract:

In the present study, Beta-Sitosterol in Lawsonia methanolic leaf extract embedded in controlled release nanocomposite was prepared and evaluated for in vivo anticancer efficacy in dimethyl hydrazine (DMH) induced colon cancer. In the present study, colon cancer was induced by s.c injection of DMH (20 mg/kg b.wt) for 15 weeks. The animals were divided into five groups as follows control, DMH alone, DMH and Beta Sitosterol nanocomposite (50mg/kg), DMH and Beta Sitosterol nanocomposite (100 mg/kg) and DMH and Standard Silymarin (100mg/kg) and the treatment was carried out for 15 weeks. At the end of the study period, the blood was withdrawn, and serum was separated for haematological, biochemical analysis and tumor markers. Further, the colonic tissue was removed for the estimation of antioxidants and histopathological analysis. The results of the study displays that DMH intoxication elicits altered haematological parameters (RBC,WBC, and Hb), elevated lipid peroxidation and decreased antioxidants level (SOD, CAT, GPX, GST and GSH), elevated lipid profiles (cholesterol and triglycerides), tumor markers (CEA and AFP) and altered colonic tissue histology. Meanwhile, treatment with Beta Sitosterol nanocomposites significantly restored the altered biochemicals parameters in DMH induced colon cancer mediated by its anticancer efficacy. Further, Beta Sitosterol nanocomposite (100 mg/kg) showed marked efficacy.

Keywords: nanocomposites, herbal formulation, henna, beta sitosterol, colon cancer, dimethyl hydrazine, antioxidant, lipid peroxidation

Procedia PDF Downloads 134
352 Ameliorative Effect of Martynia annua Linn. on Collagen-Induced Arthritis via Modulating Cytokines and Oxidative Stress in Mice

Authors: Alok Pal Jain, Santram Lodhi

Abstract:

Martynia annua Linn. (Martyniaccae) is traditionally used in inflammation and applied locally to tuberculosis glands of camel’s neck. The leaves used topically to bites of venomous insects and wounds of domestic animals. Chemical examination of Martynia annua leaves revealed the presence of glycosides, tannins, proteins, phenols and flavonoids. The present study was aimed to evaluate the anti-arthritic activity of methanolic extract of Martynia annua leaves. Methanolic extract of Martynia annua leaves was tested by using in vivo collagen-induced arthritis mouse model to investigate the anti-rheumatoid arthritis activity. In addition, antioxidant effect of methanolic extract was determined by the estimation of antioxidants level in joint tissues. The severity of arthritis was assessed by arthritis score and edema. Levels of cytokines TNF-α and IL-6, in the joint tissue homogenate were measured using ELISA. A high dose (250 mg/kg) of methanolic extract was significantly reduced the degree of inflammation in mice as compared with reference drug. Antioxidants level and malondialdehyde (MDA) in joint tissue homogenate found significantly (p < 0.05) higher. Methanolic extract at dose of 250 mg/kg modulated the cytokines production and suppressed the oxidative stress in the mice with collagen-induced arthritis. This study suggested that Martynia annua might be alternative herbal medicine for the management of rheumatoid arthritis.

Keywords: Martynia annua, collagen, rheumatoid arthritis, antioxidants

Procedia PDF Downloads 259
351 Use of Amaranthus Roxburghianus Root Extract in the Treatment of Ulcerative Colitis in Mice

Authors: S. A. Nirmal, J. M. Ingale, G. S. Asane, S. C. Pal, Subhash C. Mandal

Abstract:

The present work was undertaken to determine the effects of Amaranthus roxburghianus Nevski. (Amaranthaceae) root alone and in combination with piperine in treating ulcerative colitis (UC) in mice. Swiss albino mice were divided into seven groups (n = 6). Standard group received prednisolone (5 mg/kg, i.p.). Treatment groups received hydroalcoholic extract of roots of A. roxburghianus (50 and 100 mg/kg, p.o.) and a combination of hydroalcoholic extract of roots of A. roxburghianus (50 and 100 mg/kg, p.o.) and piperine (5 mg/kg, p.o.). Ulcer index, colitis severity, myeloperoxidase (MPO), malondialdehyde and glutathione were estimated from blood and tissue. Column chromatography of the extract was done and purified fractions were analyzed by gas chromatography-mass spectroscopy (GC-MS). Treatment with the combination of hydroalcoholic extract of A. roxburghianus and piperine showed minimal ulceration, hemorrhage, necrosis and leucocyte infiltration by histopathological observation. Acetic acid increased MPO levels in blood and colon tissue to 355 U/mL and 385 U/mg, respectively. The combination of hydroalcoholic extract (100 mg/kg) and piperine (5 mg/kg) significantly decreased MPO in blood and tissue to 182 U/mL and 193 U/mg, respectively. Similarly, this combination significantly reduced MPO and increased glutathione levels in blood and tissue. Various phytoconstituents were detected by GC-MS. The combination of hydroalcoholic extract and piperine is effective in the treatment of UC and the effects are comparable with the standard drug prednisolone. 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl, eugenol and benzene, and 1-(1,5-dimethyl-4-hexenyl)-4-methyl are reported having analgesic, anti-inflammatory, and antioxidant properties; they may play a role in the biological activity of A. roxburghianus root.

Keywords: Amaranthus roxburghianus, ulcerative colitis, anti-inflammatory, ulcerative colitis

Procedia PDF Downloads 493
350 Investigating the Flavin-Dependent Thymidylate Synthase (FDTS) Enzyme from Clostridioides Difficile (C. diff)

Authors: Sidra Shaw, Sarenna Shaw, Chae Joon Lee, Irimpan Mathews, Eric Koehn

Abstract:

One of the biggest public health concerns of our time is increasing antimicrobial resistance. As of 2019, the CDC has documented more than 2.8 million serious antibiotic resistant infections in the United States. Currently, antibiotic resistant infections are directly implicated in over 750,000 deaths per year globally. On our current trajectory, British economist Jim O’Neill predicts that by 2050, an additional 10 million people (about half the population of New York) will die annually due to drug resistant infections. As a result, new biochemical pathways must be targeted to generate next generation antibiotic drugs that will be effective against drug resistant bacteria. One enticing target is the biosynthesis of DNA within bacteria, as few drugs interrupt this essential life process. Thymidylate synthase enzymes are essential for life as they catalyze the synthesis of a DNA building block, 2′-deoxythymidine-5′-monophosphate (dTMP). In humans, the thymidylate synthase enzyme (TSase) has been shown to be distinct from the flavin-dependent thymidylate synthase (FDTS) produced by many pathogenic bacteria. TSase and FDTS have distinct structures and mechanisms of catalysis, which should allow selective inhibition of FDTS over human TSase. Currently, C. diff is one of the most antibiotic resistant bacteria, and no drugs that target thymine biosynthesis exist for C. diff. Here we present the initial biochemical characterization of FDTS from C. diff. Specifically, we examine enzyme kinetics and binding features of this enzyme to determine the nature of interaction with ligands/inhibitors and understand the molecular mechanism of catalysis. This research will provide more insight into the targetability of the C. diff FDTS enzyme for novel antibiotic drugs.

Keywords: flavin-dependent thymidylate synthase, FDTS, clostridioides difficile, C. diff, antibiotic resistance, DNA synthesis, enzyme kinetics, binding features

Procedia PDF Downloads 64