Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 179

Search results for: cytokines

179 Level of Reactive Oxygen Species and Inflammatory Cytokines in Rheumatoid Arthritis Patients: Correlation with Disease Severity

Authors: Somaiya Mateen, Shagufta Moin, Mohammad Owais, Abdul Khan, Atif Zafar

Abstract:

In rheumatoid arthritis (RA), impaired oxidative metabolism and imbalance between pro-and anti-inflammatory cytokines are responsible for causing inflammation and the degradation of cartilage and bone. The present study was done to evaluate the level and hence the role of reactive oxygen species (ROS) and inflammatory cytokines in the pathogenesis of RA. The present study was performed in the blood of 80 RA patients and 55 age and sex-matched healthy controls. The level of ROS (in 5% hematocrit) and the plasma level of pro-inflammatory cytokines [TNF-α, interleukin-6 (IL-6), IL-22] and anti-inflammatory cytokines (IL-4 and IL-5) were monitored in healthy subjects and RA patients. For evaluating the role of rheumatoid factor (RF) in the pathogenesis of RA, patients were sub-divided on the basis of presence or absence of RF. Reactive species and inflammatory cytokines were correlated with disease activity measure-Disease Activity Score for 28 joints (DAS28). The level of ROS, TNF-α, IL-6 and IL-22 were found to be significantly higher in RA patients as compared to the healthy controls, with the increase being more significant in patients positive for rheumatoid factor and those having high disease severity. On the other hand, a significant decrease in the level of IL-4 and IL-10 were observed in RA patients compared with healthy controls, with the decrease being more prominent in severe cases of RA. Higher ROS (indicative of impaired anti-oxidant defence system) and pro-inflammatory cytokines level in RA patients may lead to the damage of biomolecules which in turn contributes to tissue damage and hence to the development of more severe RA. The imbalance between pro-and anti-inflammatory cytokines may lead to the development of multi-system immune complications. ROS and inflammatory cytokines may also serve as a potential biomarker for assessing the disease severity.

Keywords: rheumatoid arthritis, reactive oxygen species, pro-inflammatory cytokines, anti-inflammatory cytokines

Procedia PDF Downloads 209
178 TNF-Kinoid® in Autoimmune Diseases

Authors: Yahia Massinissa, Melakhessou Med Akram, Mezahdia Mehdi, Marref Salah Eddine

Abstract:

Cytokines are natural proteins which act as true intercellular communication signals in immune and inflammatory responses. Reverse signaling pathways that activate cytokines help to regulate different functions at the target cell, causing its activation, its proliferation, the differentiation, its survival or death. It was shown that malfunctioning of the cytokine regulation, particularly over-expression, contributes to the onset and development of certain serious diseases such as chronic rheumatoid arthritis, Crohn's disease, psoriasis, lupus. The action mode of Kinoid® technology is based on the principle vaccine: The patient's immune system is activated so that it neutralizes itself and the factor responsible for the disease. When applied specifically to autoimmune diseases, therapeutic vaccination allows the body to neutralize cytokines (proteins) overproduced through a highly targeted stimulation of the immune system.

Keywords: cytokines, Kinoid tech, auto-immune diseases, vaccination

Procedia PDF Downloads 196
177 Redirection of Cytokine Production Patterns by Dydrogesterone, an Orally-Administered Progestogen

Authors: Raj Raghupathy

Abstract:

Recurrent Spontaneous Miscarriage (RSM) is a common form of pregnancy loss, 50% of which are due to ‘unexplained’ causes. Evidence exists to suggest that RSM may be caused by immunologic factors such as cytokines which are critical molecules of the immune system, with an impressive array of capabilities. An association appears to exist between Th2-type reactivity (mediated by Th2 or anti-inflammatory cytokines) and normal, successful pregnancy, and between unexplained RSM and Th1 cytokine dominance. If pro-inflammatory cytokines are indeed associated with pregnancy loss, the suppression of these cytokines, and thus the ‘redirection’ of maternal reactivity, may help prevent cytokine-mediated pregnancy loss. The objective of this study was to explore the possibility of modulating cytokine production using Dydrogesterone (Duphaston®), an orally-administered progestogen. Peripheral blood mononuclear cells from 34 women with a history of at least 3 unexplained recurrent miscarriages were stimulated in vitro with a mitogen (to elicit cytokine production) in the presence and absence of dydrogesterone. Levels of selected pro- and anti-inflammatory cytokines produced by peripheral blood mononuclear cells were measured after exposure to these progestogens. Dydrogesterone down-regulates the production of pro-inflammatory cytokines and up-regulates the production of anti-inflammatory cytokines. The ratios of Th2 to Th1 cytokines are markedly elevated in the presence of dydrogesterone, indicating a shift from potentially harmful maternal Th1 reactivity to a more pregnancy-conducive Th2 profile. We used a progesterone receptor antagonist to show that this cytokine-modulating effect of dydrogesterone is mediated via the progesterone receptor. Dydrogesterone also induces the production of the Progesterone-Induced Blocking Factor (PIBF); lymphocytes exposed to PIBF produce higher levels of Th2 cytokines, affecting a Th1 → Th2 cytokine shift which could be favourable to the success of pregnancy. We conclude that modulation of maternal cytokine production profiles is possible with dydrogesterone which has the merits that it can be administered orally and that it is safe.

Keywords: cytokines, dydrogesterone, progesterone, recurrent spontaneous miscarriage

Procedia PDF Downloads 186
176 Role of Moderate Intensity Exercises in the Amelioration of Oxidant-Antioxidant Status and the Levels of Inflammatory Cytokines in Rheumatoid Arthritis Patients

Authors: Somaiya Mateen, Shagufta Moin, Abdul Qayyum, Atif Zafar

Abstract:

Cytokines and reactive species play an important role in the pathophysiology of rheumatoid arthritis (RA). This study was done to determine the levels of reactive oxygen and nitrogen species (ROS and RNS), inflammatory cytokines and the markers of protein, DNA and lipid oxidation in the blood of RA patients, with the aim to study the antioxidant and anti-inflammatory role of moderate intensity exercises in the management of RA. RA patients were subdivided into two groups- first group (n=30) received treatment with conventional RA drugs while the second group (n=30) received moderate exercise therapy along with the conventional drugs for a period of 12 weeks. The levels of ROS, RNS, inflammatory cytokines and markers of biomolecule oxidation were monitored before and after 12 weeks of treatment. RA patients showed a marked increase in the levels of ROS, RNS, inflammatory cytokines, lipid, protein and DNA oxidation as compared to the healthy controls. These parameters were ameliorated after treatment with drugs alone and exercise combined with drugs, with the amelioration being more significant in patients given drugs along with the moderate intensity exercise treatment. In conclusion, the role of ROS, RNS and inflammatory cytokines in the pathogenesis of RA has been confirmed by this study. These may also serve as potential biomarker for assessing the disease severity. Finally, the addition of moderate intensity exercises in the management of RA may be of great value.

Keywords: rheumatoid arthritis, reactive oxygen species, inflammatory cytokines, moderate intensity exercises

Procedia PDF Downloads 199
175 Impact of Tuberculosis Co-infection on Cytokine Expression in HIV-Infected Individuals

Authors: M. Nosik, I. Rymanova, N. Adamovich, S. Sevostyanihin, K. Ryzhov, Y. Kuimova, A. Kravtchenko, N. Sergeeva, A. Sobkin

Abstract:

HIV and Tuberculosis (TB) infections each speed the other's progress. HIV-infection increases the risk of TB disease. At the same time, TB infection is associated with clinical progression of HIV-infection. HIV+TB co-infected patients are also at higher risk of acquiring new opportunistic infections. An important feature of disease progression and clinical outcome is the innate and acquired immune responses. HIV and TB, however, have a spectrum of dysfunctions of the immune response. As cytokines play a crucial role in the immunopathology of both infections, it is important to study immune interactions in patients with dual infection HIV+TB. Plasma levels of proinflammatory cytokines IL-2, IFN-γ and immunoregulating cytokines IL-4, IL-10 were evaluated in 75 patients with dual infection HIV+TB, 58 patients with HIV monoinfection and 50 patients with TB monoinfection who were previously naïve for HAART. The decreased levels of IL-2, IFN-γ, IL-4 and IL-10 were observed in patients with dual infection HIV+TB in comparison with patients who had only HIV or TB which means the profound suppression of Th1 and Th2 cytokine secretion. Thus, those cytokines could possibly serve as immunological markers of progression of HIV-infection in patients with TB.

Keywords: HIV, tuberculosis (TB), HIV associated with TB, Th1/ Th2 cytokine expression

Procedia PDF Downloads 242
174 Clinical Utility of Salivary Cytokines for Children with Attention Deficit Hyperactivity Disorder

Authors: Masaki Yamaguchi, Daimei Sasayama, Shinsuke Washizuka

Abstract:

The goal of this study was to examine the possibility of salivary cytokines for the screening of attention deficit hyperactivity disorder (ADHD) in children. We carried out a case-control study, including 19 children with ADHD and 17 healthy children (controls). A multiplex bead array immunoassay was used to conduct a multi-analysis of 27 different salivary cytokines. Six salivary cytokines (interleukin (IL)-1β, IL-8, IL12p70, granulocyte colony-stimulating factor (G-CSF), interferon gamma (IFN-γ), and vascular endothelial growth factor (VEGF)) were significantly associated with the presence of ADHD (p < 0.05). An informative salivary cytokine panel was developed using VEGF by logistic regression analysis (odds ratio: 0.251). Receiver operating characteristic analysis revealed that assessment of a panel using VEGF showed “good” capability for discriminating between ADHD patients and controls (area under the curve: 0.778). ADHD has been hypothesized to be associated with reduced cerebral blood flow in the frontal cortex, due to reduced VEGF levels. Our study highlights the possibility of utilizing differential salivary cytokine levels for point-of-care testing (POCT) of biomarkers in children with ADHD.

Keywords: cytokine, saliva, attention deficit hyperactivity disorder, child

Procedia PDF Downloads 26
173 Assessment of Mammary Gland Immunity and Therapeutic Potential of Topical Herbal Gel against Bovine Subclinical Mastitis

Authors: Mukesh N. Kher, Anju P. Kunjadia, Dev S. Nauriyal, Chaitanya G. Joshi, Navin R. Sheth, Vaibhav D. Bhatt

Abstract:

In-vivo immunotherapeutic potential on cytokines production and antibacterial activity of a topical herbal gel was evaluated in two breeds of cattle in bovine subclinical mastitis. The response to treatment was evaluated by enumerating somatic cell count (SCC), determining total bacterial count and studying the expression of different cytokines like (interleukin 6, 8, 12, GMCSF, interferon–γ and TNF‑α). The pre‑ and post‑treatment SCC in mastitic quarters did not differ statistically-significantly. However, total bacterial count declined significantly from day 0 onwards in both the breeds. Significant differences (P < 0.01) were observed in all types of cytokines production on day 0, 5, and 21 post last treatments in both the breeds. The comparison of cytokine expression profiles between crossbred and Gir cattle affirmed a significant difference in expression of IL-6 and TNF-α. The topical herbal gel showed immunomodulatory and antimicrobial activities in subclinical mastitis, and therefore the work supports its use as substitute herbal therapy against subclinical mastitis in bovines.

Keywords: antibacterial activity, immunomodulation, herbal gel, subclinical mastitis

Procedia PDF Downloads 149
172 Stem Cell Augmentation Therapy for Cardiovascular Risk in Ankylosing Spondylitis: STATIN-as Study

Authors: Ashit Syngle, Nidhi Garg, Pawan Krishan

Abstract:

Objective: Bone marrow derived stem cells, endothelial progenitor cells (EPCs), protect against atherosclerotic vascular damage. However, EPCs are depleted in AS and contribute to the enhanced cardiovascular risk. Statins have a protective effect in CAD and diabetes by enhancing the proliferation, migration and survival of EPCs. Therapeutic potential of augmenting EPCs to treat the heightened cardiovascular risk of AS has not yet been exploited. We aimed to investigate the effect of rosuvastatin on EPCs population and inflammation in AS. Methods: 30 AS patients were randomized to receive 6 months of treatment with rosuvastatin (10 mg/day, n=15) and placebo (n=15) as an adjunct to existing stable anti-rheumatic drugs. EPCs (CD34+/CD133+) were quantified by Flow Cytometry. Inflammatory measures (BASDAI, BASFI, CRP and ESR), pro-inflammatory cytokines (TNF-α, IL-6 and IL-1) and lipids were measured at baseline and after treatment. Results: At baseline, inflammatory measures and pro-inflammatory cytokines were elevated and EPCs depleted among both groups. EPCs increased significantly (p < 0.01) after treatment with rosuvastatin. At 6 months, BASDAI, BASFI, ESR, CRP, TNF-α, and IL-6 improved significantly in rosuvastatin group. Significant negative correlation was observed between EPCs and BASDAI, CRP and IL-6 after rosuvastatin treatment. Conclusion: First study to show that rosuvastatin augments EPCs population in AS. This defines a novel mechanism of rosuvastatin treatment in AS: the augmentation of EPCs with improvement in proinflammatory cytokines and inflammatory disease activity. The augmentation of EPCs by rosuvastatin may provide a novel strategy to prevent cardiovascular events in AS.

Keywords: ankylosing spondylitis, Endothelial Progenitor Cells, inflammation, pro-inflammatory cytokines, rosuvastatin

Procedia PDF Downloads 236
171 Host Responses in Peri-Implant Tissue in Comparison to Periodontal Tissue

Authors: Raviporn Madarasmi, Anjalee Vacharaksa, Pravej Serichetaphongse

Abstract:

The host response in peri-implant tissue may differ from that in periodontal tissue in a healthy individual. The purpose of this study is to investigate the expression of inflammatory cytokines in peri-implant crevicular fluid (PICF) from single implant with different abutment types in comparison to healthy periodontal tissue. 19 participants with healthy implants and teeth were recruited according to inclusion and exclusion criteria. PICF and gingival crevicular fluid (GCF) was collected using sterile paper points. The expression level of inflammatory cytokines including IL-1α, IL-1β, TNF-α, IFN-γ, IL-6, and IL-8 was assessed using enzyme-linked immunosorbent assay (ELISA). Paired t test was used to compare the expression levels of inflammatory cytokines around natural teeth and peri-implant in PICF and GCF of the same individual. The Independent t-test was used to compare the expression levels of inflammatory cytokines in PICF from titanium and UCLA abutment. Expression of IL-6, TNF-α, and IFN-γ in PICF was not statistically different from GCF among titanium and UCLA abutment group. However, the level of IL-1α in the PICF from the implants with UCLA abutment was significantly higher than GCF (P=0.030). In addition, the level of IL-1β in PICF from the implants with titanium abutment was significantly higher than GCF (P=0.032). When different abutment types was compared, IL-8 expression in PICF from implants with UCLA abutment was significantly higher than titanium abutment (P=0.003).

Keywords: abutment, dental implant, gingival crevicular fluid and peri-implant crevicular fluid

Procedia PDF Downloads 92
170 Influence of IL-1β on Hamster Blastocyst Hatching via Regulation of Hatching Associated Proteases

Authors: Madhulika Pathak, Polani Seshagiri, Vani Venkatappa

Abstract:

Blastocyst hatching is an indispensable process for successful implantation. One of the major reasons for implantation failure in IVF clinic is poor quality of embryo, which are not development/hatching-competent. Therefore, attempts are required to develop or enhance the culture system with a molecule recapitulating the autocrine/paracrine factors containing the environment of in-vivo endometrial milieu. We have tried to explore the functional molecules involved in the hamster hatching phenomenon. Blastocyst hatching is governed by several molecules that are entwined and regulate this process, among which cytokines are known to be expressed and are still least explored. Two of such cytokines we have used for our study are IL-1β and its natural antagonist IL-1ra to understand the functional dynamics of cytokines involved in the hatching process. Using hamster, an intriguing experimental model for hatching behavior, we have shown the mRNA (qPCR) and protein (ICC) expression of IL-1β, IL-1ra and IL-1 receptor type 1 throughout all the stages of morula, blastocyst and hatched blastocyst. Post-asserting the expression, the functional role is shown by supplementation studies, where IL-1β supplementation showed enhancement in hatching level (IL-1β treated: 84.1 ± 4.2% vs control: 63.7 ± 3.1 %, N=11), further confirmed by the diminishing effect of IL-1ra on hatching rate (IL-1ra treated: 27.5 ± 11.1% vs control: 67.9 ± 3.1%). The exogenous supplementation of IL-1ra decreased the survival rate of embryos and affected the viability in dose-dependent manner, establishing the importance of IL-1β in blastocyst cell survival. Previously, the cathepsin L and B were established as the proteases that were involved in the hamster hatching process. The inducing effect of IL-1β was correlated with enhanced mRNA level, as analyzed by qPCR, for both CAT L (by 1.9 ± 0.5 fold) and CAT B (by 3.5 ± 0.1) fold which was diminished in presence of IL-1ra (Cat L by 88 percent and Cat B by 94 percent. Moreover, using a specific fluorescent substrate-based assay kit, the enzymatic activity of these proteases was found to be increased in presence of IL-1β (Cat L by 2.1 ± 0.1 fold and CAT B by 2.3 ± 0.7 fold) and was curtailed in presence of IL-1ra. These observations provide functional insights with respect to the involvement of cytokines in the hatching process. This has implications in understanding the hatching biology and improving the embryo development quality in IVF clinics.

Keywords: Blastocyst, Cytokines, Hatching, Interleukin

Procedia PDF Downloads 25
169 Sulforaphane Attenuates Muscle Inflammation in Dystrophin-Deficient Mdx Mice via Nrf2/HO-1 Signaling Pathway

Authors: Chengcao Sun, Cuili Yang, Shujun Li, Ruilin Xue, Yongyong Xi, Liang Wang, Dejia Li

Abstract:

Backgrounds: Inflammation is widely distributed in patients with Duchenne muscular dystrophy (DMD), and ultimately leads to progressive deterioration of muscle function with the co-effects of chronic muscle damage, oxidative stress, and reduced oxidative capacity. NF-E2-related factor 2 (Nrf2) plays a critical role in defending against inflammation in different tissues via activation of phase II enzymes, heme oxygenase-1 (HO-1). However, whether Nrf2/HO-1 pathway can attenuate muscle inflammation on DMD remains unknown. The purpose of this study was to determine the anti-inflammatory effects of Sulforaphane (SFN) on DMD. Methods: 4-week-old male mdx mice were treated with SFN by gavage (2 mg/kg body weight per day) for 4 weeks. Gastrocnemius, tibial anterior and triceps brachii muscles were collected for related analysis. Immune cell infiltration in skeletal muscles was analyzed by H&E staining and immuno-histochemistry. Moreover, the expressions of inflammatory cytokines,pro-inflammatory cytokines and Nrf2/HO-1 pathway were detected by western blot, qRT-PCR, immunohistochemistry and immunofluorescence assays. Results: Our results demonstrated that SFN treatment increased the expression of muscle phase II enzymes HO-1 in Nrf2 dependent manner. Inflammation in mdx skeletal muscles was reduced by SFN treatment as indicated by decreased immune cell infiltration and lower expressions of the inflammatory cytokines CD45, pro-inflammatory cytokines tumour necrosis factor-α and interleukin-6 in the skeletal muscles of mdx mice. Conclusions: Collectively, these results show that SFN can ameliorate muscle inflammation in mdx mice by Nrf2/HO-1 pathway, which indicates Nrf2/HO-1 pathway may represent a new therapeutic target for DMD.

Keywords: sulforaphane, Nrf2, HO-1, inflammation

Procedia PDF Downloads 213
168 Role of Pro-Inflammatory and Regulatory Cytokines in Pathogenesis of Graves’ Disease in Association with Autoantibody Thyroid and Regulatory FoxP3 T-Cells

Authors: Dwitya Elvira, Eryati Darwin

Abstract:

Background: Graves’ disease (GD) is an autoimmune thyroid disease. Imbalance of Th1/Th2 cells and T-regulatory (Treg)/Th17 cells was thought to play pivotal role in the pathogenesis of GD. Treg FoxP3 produced TGF-β to maintain regulatory function, and Th17 cells produced IL-17 as cytokines that were thought in mediating several autoimmune diseases. The aim of this study is to assess the role of IL-17 and TGF-β in the pathogenesis of GD and to investigate its correlation with Thyroid Stimulating Hormone Receptor Antibody (TRAb) and Treg FoxP3 expression. Method: 30 GD patients and 27 age and sex-matched controls were enrolled in this study. Diagnosis of GD was based on clinical and biochemical of GD. Serum IL-17, TGF-β, TRAb, and FoxP3 were measured by enzyme-linked immunosorbent assay (ELISA). Data were analyzed by using SPSS 21.0 (SPSS Inc.). Spearman rank correlation test was used for assessment of correlation. The statistical significance was accepted as P<0.05. Result: There was no significant correlation between IL-17 and TGF-β serum with expression of FoxP3 level in GD, but there was significant correlation between TGF-β and TRAb serum level (P<0.05). Serum levels of IL-17 and TGF-β were found to be elevated in patient group compared to control, where mean values of IL-17 were 14.43±2.15 pg/mL and TGF-β were 10.44±3.19 pg/mL in patients group; and in control group, level of IL-17 were 7.1±1.45 pg/mL and TGF-β were 4.95±1.35 pg/mL. Conclusion: Serum Il-17 and TGF-β were elevated in GD patients that reflect the role of inflammatory and regulatory cytokines activation in pathogenesis of GD. There was significant correlation between TGF-β and TRAb, revealing that Treg cytokines may play a role in pathogenesis of GD.

Keywords: IL-17, TGF-B, FoxP3, TRAb, Graves’ disease

Procedia PDF Downloads 184
167 Stability Analysis of Tumor-Immune Fractional Order Model

Authors: Sadia Arshad, Yifa Tang, Dumitru Baleanu

Abstract:

A fractional order mathematical model is proposed that incorporate CD8+ cells, natural killer cells, cytokines and tumor cells. The tumor cells growth in the absence of an immune response is modeled by logistic law as it was the simplest form for which predictions also agreed with the experimental data. Natural Killer Cells are our first line of defense. NK cells directly kill tumor cells through several mechanisms, including the release of cytoplasmic granules containing perforin and granzyme, expression of tumor necrosis factor (TNF) family members. The effect of the NK cells on the tumor cell population is expressed with the product term. Rational form is used to describe interaction between CD8+ cells and tumor cells. A number of cytokines are produced by NKs, including tumor necrosis factor TNF, IFN, and interleukin (IL-10). Source term for cytokines is modeled by Michaelis-Menten form to indicate the saturated effects of the immune response. Stability of the equilibrium points is discussed for biologically significant values of bifurcation parameters. We studied the treatment of fractional order system by investigating analytical conditions of tumor eradication. Numerical simulations are presented to illustrate the analytical results.

Keywords: cancer model, fractional calculus, numerical simulations, stability analysis

Procedia PDF Downloads 196
166 Acute Phase Proteins, Proinflammatory Cytokines and Oxidative Stress Biomarkers in Sheep with Pneumonic Pasteurellosis

Authors: Wael M. El-Deeb

Abstract:

The aim of this study was to assess the pathophysiological importance of lipid profile, acute phase proteins, proinflammatory cytokines and oxidative stress markers in sheep with pneumonic pasteurellosis. Blood samples were collected from 36 Pasteurellamultocida-infected sheep, together with 20 healthy controls. Samples for bacteriological examination (nasal swabs, bronchoalveolar lavage) were collected from all animals and subjected to bacteriological examinations. Moreover, heart blood and lung samples were collected from the dead pneumonic sheep and subjected also to bacteriological examinations. A lipid profile was determined, along with a blood picture and other biochemical parameters. The acute phase proteins (fibrinogen, haptoglobin, serum amyloid A), the proinflammatory cytokine tumour necrosis factor-alpha, interleukins (IL-1α, IL-1β, IL-6), interferon-gamma and the oxidative stress markers malondialdehyde, super oxide dismutase, glutathione and catalase were also measured. The examined biochemical parameters were increased in the pneumonic sheep, except for cholesterol and high-density lipoprotein cholesterol (HDL-c), which were significantly lower than control group. Acute phase proteins and cytokines were significantly higher in the pneumonic sheep when compared to the healthy sheep. There was a significant increase in the levels of malondialdehyde; however, a significant decrease in the levels of super oxide dismutase, glutathione and catalase was observed. The present study shed the light on the possible pathphysiological role of lipid profile, acute phase proteins (APPs), proinflammatory cytokines and oxidative stress markers in pneumonic pasteurelosis in sheep.

Keywords: acute phase proteins, sheep, pasteurella, interleukins, stress

Procedia PDF Downloads 282
165 Impact of Cytokines Alone and Primed with Macrophages on Balamuthia mandrillaris Interactions with Human Brain Microvascular Endothelial Cells in vitro

Authors: Abdul Matin, Salik Nawaz, Suk-Yul Jung

Abstract:

Balamuthia mandrillaris is well known to cause fatal Balamuthia amoebic encephalitis (BAE). Amoebic transmission into the central nervous system (CNS), haematogenous spread is thought to be the prime step, followed by blood-brain barrier (BBB) dissemination. Macrophages are considered to be the foremost line of defense and present in excessive numbers during amoebic infections. The aim of the present investigation was to evaluate the effects of macrophages alone or primed with cytokines on the biological characteristics of Balamuthia in vitro. Using human brain microvascular endothelial cells (HBMEC), which constitutes the BBB, we have shown that Balamuthia demonstrated > 90% binding and > 70% cytotoxicity to host cells. However, macrophages further increased amoebic binding and Balamuthia-mediated cell cytotoxicity. Furthermore, macrophages exhibited no amoebicidal effect against Balamuthia. Zymography assay demonstrated that macrophages exhibited no inhibitory effect on proteolytic activity of Balamuthia. Overall, to our best knowledge, we have shown for the first time macrophages has no inhibitory effects on the biological properties of Balamuthia in vitro. This also strengthened the concept that how and why Balamuthia can cause infections in both immuno-competent and immuno-compromised individuals.

Keywords: Balamuthia mandrillaris, macrophages, cytokines, human brain microvascular endothelial cells, Balamuthia amoebic encephalitis

Procedia PDF Downloads 67
164 Angiogenic and Immunomodulatory Properties and Phenotype of Mesenchymal Stromal Cells Can Be Regulated by Cytokine Treatment

Authors: Ekaterina Zubkova, Irina Beloglazova, Iurii Stafeev, Konsyantin Dergilev, Yelena Parfyonova, Mikhail Menshikov

Abstract:

Mesenchymal stromal cells from adipose tissue (MSC) currently are widely used in regenerative medicine to restore the function of damaged tissues, but that is significantly hampered by their heterogeneity. One of the modern approaches to overcoming this obstacle is the polarization of cell subpopulations into a specific phenotype under the influence of cytokines and other factors that activate receptors and signal transmission to cells. We polarized MSC with factors affecting the inflammatory signaling and functional properties of cells, followed by verification of their expression profile and ability to affect the polarization of macrophages. RT-PCR evaluation showed that cells treated with LPS, interleukin-17, tumor necrosis factor α (TNF α), primarily express pro-inflammatory factors and cytokines, and after treatment with polyninosin polycytidic acid and interleukin-4 (IL4) anti-inflammatory factors and some proinflammatory factors. MSC polarized with pro-inflammatory cytokines showed a more robust pro-angiogenic effect in fibrin gel bead 3D angiogenesis assay. Further, we evaluated the possibility of paracrine effects of MSCs on the polarization of intact macrophages. Polarization efficiency was assesed by expression of M1/M2 phenotype markers CD80 and CD206. We showed that conditioned media from MSC preincubated in the presence of IL-4 cause an increase in CD206 expression similar to that observed in M2 macrophages. Conditioned media from MSC polarized in the presence of LPS or TNF-α increased the expression of CD80 antigen in macrophages, similar to that observed in M1 macrophages. In other cases, a pronounced paracrine effect of MSC on the polarization of macrophages was not detected. Thus, our study showed that the polarization of MSC along the pro-inflammatory or anti-inflammatory pathway allows us to obtain cell subpopulations that have a multidirectional modulating effect on the polarization of macrophages. (RFBR grants 20-015-00405 and 18-015-00398.)

Keywords: angiogenesis, cytokines, mesenchymal, polarization, inflammation

Procedia PDF Downloads 28
163 Effect of Probiotics and Vitamin B on Plasma Interferon-Gamma and Interleukin-6 Levels in Active Pulmonary Tuberculosis

Authors: Yulistiani Yulistiani, Zamrotul Izzah, Lintang Bismantara, Wenny Putri Nilamsari, Arif Bachtiar, Budi Suprapti

Abstract:

Interferon-gamma (IFN-γ) and interleukin-6 (IL-6) are pro-inflammatory cytokines, which have the protective immune response against Tuberculosis (TB). Indeed, pro-inflammatory cytokines Mycobacterium tuberculosis antigen-specific CD4+ and CD8+ T cells and NK cells increase the level of production of IFN-γ, a cytokine critical for augmenting the microbicidal activity of phagocytes. On the other hand, M. tuberculosis reduces the effects of IFN-γ by inhibiting the transcription of IFN-γ- responsive genes and by inducing the secretion of IL-6, which inhibits IFN-γ signaling. Probiotics Lactobacillus sp. and Bifidobacterium sp. were known to increase IFN-γ production in vivo, while vitamin B1, B6, and B12 worked on macrophages and releasing cytokines. Therefore, the present study was to evaluate the effect of probiotics and vitamin B supplement on changes of plasma cytokine levels in active pulmonary TB. From October to November 2016, twelve M. tuberculosis-infected patients starting anti-TB drugs were recruited, then divided into two groups. Seven patients were given a combination of probiotics and vitamin B, while five patients were in the control group. Plasma IFN-γ and IL-6 levels were measured by the ELISA kit before and a month after treatment. IFN-γ levels raised in four patients receiving the supplement (P = 0.743), while IL-6 increased in three patients in this group until day 30 of treatment (P = 0.298). Taken together, these results show the promising effect of probiotics and vitamin B on stimulation of IFN-γ and IL-6 production during intensive therapy of TB.

Keywords: interferon-gamma, interleukin-6, probiotic, tuberculosis

Procedia PDF Downloads 240
162 Biocompatible Chitosan Nanoparticles as an Efficient Delivery Vehicle for Mycobacterium Tuberculosis Lipids to Induce Potent Cytokines and Antibody Response through Activation of γδ T-Cells in Mice

Authors: Ishani Das, Avinash Padhi, Sitabja Mukherjee, Santosh Kar, Avinash Sonawane

Abstract:

Activation of cell mediated and humoral immune responses to Mycobacterium tuberculosis (Mtb) are critical for protection. Herein, we show that mice immunized with Mtb lipid bound chitosan nanoparticles(NPs) induce secretion of prominent Th1 and Th2 cytokines in lymph node and spleen cells, and also induced significantly higher levels of IgG, IgG1, IgG2 and IgM in comparison to control mice measured by ELISA. Furthermore, significantly enhanced γδ-T cell activation was observed in lymph node cells isolated from mice immunized with Mtb lipid coated chitosan-NPs as compared to mice immunized with chitosan-NPs alone or Mtb lipid liposomes through flow cytometric analysis. Also, it was observed that in comparison to CD8+ cells, significantly higher CD4+ cells were present in both the lymph node and spleen cells isolated from mice immunized with Mtb lipid coated chitosan NP. In conclusion, this study represents a promising new strategy for efficient delivery of Mtb lipids using chitosan NPs to trigger enhanced cell mediated and antibody response against Mtb lipids.

Keywords: antibody response, chitosan nanoparticles, cytokines, mycobacterium tuberculosis lipids

Procedia PDF Downloads 168
161 Antiasthmatic Effect of Kankasava in OVA-Induced Asthma Mouse Model

Authors: Bharti Ahirwar

Abstract:

The main object of this study was to evaluate the effect of kankasava on OVA-induced asthma in mouse model. Present study has demonstrated that kankasava exhibited an antiasthmatic effect by attenuated AHR and reducing level of IgE, IL-5, and IL-13, in both serum and BALF in OVA induced asthmatic mice. Effect of kankasav on airway responsiveness was obtained by monitoring the enhanced pen value . Kankasava significantly reduced AHR can be explained, in part, by reduction in both IgE overexoression and cytokine levels. Kankasava significantly decreased IL-4, IL-5, and IL-13 in BALF indicate that it may suppress the excess activity of T-cells and Th2 cytokines, which are implicated in the pathogenesis of allergic asthma, and consequently restore the Th1/Th2 imbalance of the immune system. In summary, we hypothesize that kankasava effectively suppressed elevations in IgE and cytokines levels, AHR, and mucus overproduction in mice with OVA-induced asthma suggested kankasava could be effective in immunological and pharmacological modulation of allergic asthma.

Keywords: asthma, ayurveda, kankasava, cytokine

Procedia PDF Downloads 217
160 Lack of Association between IL-10 Promoter Gene Polymorphisms and Tuberculosis Susceptibility in Thai Population

Authors: Manaphol Kulpraneet, Anirut Limtrakul, Surangrat Srisurapanon, Piyatida Tangteerawatana

Abstract:

Tuberculosis (TB) remains a global health care disease world-wide. Control of the global TB epidemic has been impaired by the lack of an effective vaccine, by the emergence of drug resistant forms of Mycobacterium tuberculosis and by lack of sensitive and rapid diagnostics. Cytokines play a major role in defense against M. tuberculosis infection. Polymorphisms in the genes encoding various cytokines have been associated with tuberculosis susceptibility. Polymorphisms of the regulatory cytokine gene, the interleukin (IL)-10 is associated with the risk of tuberculosis (TB) in different populations. However, IL-10 gene polymorphism and susceptibility to TB in Thai is still unknown. The purpose of this study was to evaluate whether the common IL-10 promoter gene polymorphisms are associated with TB in Thai population. Forty eight patients with newly diagnosed pulmonary tuberculosis were studied. DNA samples were extracted from leukocytes and used to investigate -1087A/G, -819C/T, -252C/A (rs1800896, rs1800871, rs1800872) in IL-10 gene using restriction fragment length polymorphism (PCR-RFLP) methods. In this study, the genotype and allele frequencies of IL-10-1087A/G, -819C/T, -252C/A polymorphism did not significantly different between TB patients and healthy controls ((genotype: p=0.38, p=0.92, p=1; allele: p=0.57, p=0.77, p=0.89, respectively). The lack of association between common IL-10 promoter polymorphisms and TB susceptibility in this study may provide clue for better understanding of IL-10-1087A/G, -819C/T, -252C/A polymorphism and TB susceptibility in Thai population, which might facilitate the rationale design of vaccines. However, further studies in large scales population are required for confirmation.

Keywords: IL-10, cytokines, single nucleotide polymorphism (SNP), tuberculosis

Procedia PDF Downloads 173
159 Rosuvastatin Improves Endothelial Progenitor Cells in Rheumatoid Arthritis

Authors: Ashit Syngle, Nidhi Garg, Pawan Krishan

Abstract:

Background: Endothelial Progenitor Cells (EPCs) are depleted and contribute to increased cardiovascular (CV) risk in rheumatoid arthritis (RA). Statins exert a protective effect in CAD partly by promoting EPC mobilization. This vasculoprotective effect of statin has not yet been investigated in RA. We aimed to investigate the effect of rosuvastatin on EPCs in RA. Methods: 50 RA patients were randomized to receive 6 months of treatment with rosuvastatin (10 mg/day, n=25) and placebo (n=25) as an adjunct to existing stable antirheumatic drugs. EPCs (CD34+/CD133+) were quantified by Flow Cytometry. Inflammatory measures included DAS28, CRP and ESR were measured at baseline and after treatment. Lipids and pro-inflammatory cytokines (TNF-α, IL-6, and IL-1) were estimated at baseline and after treatment. Results: At baseline, inflammatory measures and pro-inflammatory cytokines were elevated and EPCs depleted among both groups. At baseline, EPCs inversely correlated with DAS28 and TNF-α in both groups. EPCs increased significantly (p < 0.01) after treatment with rosuvastatin but did not show significant change with placebo. Rosuvastatin exerted positive effect on lipid spectrum: lowering total cholesterol, LDL, non HDL and elevation of HDL as compared with placebo. At 6 months, DAS28, ESR, CRP, TNF-α and IL-6 improved significantly in rosuvastatin group. Significant negative correlation was observed between EPCs and DAS28, CRP, TNF-α, and IL-6 after treatment with rosuvastatin. Conclusion: First study to show that rosuvastatin improves inflammation and EPC biology in RA possibly through its anti-inflammatory and lipid lowering effect. This beneficial effect of rosuvastatin may provide a novel strategy to prevent cardiovascular events in RA.

Keywords: RA, Endothelial Progenitor Cells, rosuvastatin, cytokines

Procedia PDF Downloads 168
158 Ameliorative Effect of Martynia annua Linn. on Collagen-Induced Arthritis via Modulating Cytokines and Oxidative Stress in Mice

Authors: Alok Pal Jain, Santram Lodhi

Abstract:

Martynia annua Linn. (Martyniaccae) is traditionally used in inflammation and applied locally to tuberculosis glands of camel’s neck. The leaves used topically to bites of venomous insects and wounds of domestic animals. Chemical examination of Martynia annua leaves revealed the presence of glycosides, tannins, proteins, phenols and flavonoids. The present study was aimed to evaluate the anti-arthritic activity of methanolic extract of Martynia annua leaves. Methanolic extract of Martynia annua leaves was tested by using in vivo collagen-induced arthritis mouse model to investigate the anti-rheumatoid arthritis activity. In addition, antioxidant effect of methanolic extract was determined by the estimation of antioxidants level in joint tissues. The severity of arthritis was assessed by arthritis score and edema. Levels of cytokines TNF-α and IL-6, in the joint tissue homogenate were measured using ELISA. A high dose (250 mg/kg) of methanolic extract was significantly reduced the degree of inflammation in mice as compared with reference drug. Antioxidants level and malondialdehyde (MDA) in joint tissue homogenate found significantly (p < 0.05) higher. Methanolic extract at dose of 250 mg/kg modulated the cytokines production and suppressed the oxidative stress in the mice with collagen-induced arthritis. This study suggested that Martynia annua might be alternative herbal medicine for the management of rheumatoid arthritis.

Keywords: Martynia annua, collagen, rheumatoid arthritis, antioxidants

Procedia PDF Downloads 156
157 Autophagy Defects That Modify Human Immune Cell Metabolism and Promote Aging-Associated Inflammation

Authors: Grace McCambridge, Alanna Keady, Madhur Agrawal, Dequina Nicholas Alvarado, Barbara Nikolajczyk, Leena Panneerseelan-Bharath

Abstract:

Age is a non-modifiable risk factor for the inflammation that underlies pathologies such as type 2 diabetes mellitus (T2DM). Inflammation, as indicated by circulating cytokines, rises in aging, but mechanisms that promote this ‘inflammaging’ remain poorly defined. Furthermore, downstream consequences of inflammaging, including the development of an inflammatory profile that predicts comorbidities like T2DM, remain speculative. We tested the possibility that natural aging-associated changes in autophagy, a process that is compromised in both aging and T2DM, regulates inflammatory profiles in older subjects. Our data showed that circulating CD4⁺ T cells from older compared to younger subjects have (i) defects in autophagy; (ii) higher mitochondria accumulation; (iii) a failure to metabolically shift from oxidative phosphorylation to anaerobic glycolysis upon αCD3/CD28 activation; (iv) more reactive oxygen species (ROS) accumulation; and (v) a cytokine profile that recapitulates the Th17 profile that predicts T2DM. ROS scavenging in cells from older subjects restored mitochondrial mass and membrane potential (indicators of improved autophagy) and reduced Th17 cytokines to amounts made by T cells from younger subjects. Knock-down of the autophagy protein Atg3 in T cells from younger subjects increased mitochondrial accumulation and Th17 cytokines. To begin translating these findings to clinical practice, we showed that physiological concentrations of the diabetes drug metformin (100 µM) added in vitro enhanced autophagy, prevented mitochondria and ROS accumulation, increased anaerobic glycolysis, and decreased Th17 cytokines in activated CD4⁺ T cells from older subjects. Metformin therefore improves autophagy and multiple downstream pro-inflammatory mechanisms CD4⁺ T cells from older subjects. We conclude that autophagy improvement ameliorates the development of a T2DM-predictive Th17 profile in aging, and thus holds promise for delay or prevention of aging-associated metabolic decline.

Keywords: autophagy, mitochondrial turnover, ROS, glycolysis

Procedia PDF Downloads 39
156 Shielding Engineered Islets with Mesenchymal Stem Cells Enhance Survival under Hypoxia by Inhibiting p38 MAPK

Authors: Bhawna Chandravanshi, Ramesh Bhonde

Abstract:

In the present study, we focused on the improvisation of islet survival in hypoxia. The Islet-like cell aggregates (ICAs) derived from Wharton's jelly mesenchymal stem cells (WJ-MSC) were cultured with and without WJ-MSC for 48h in hypoxia and normoxia and tested for their direct trophic effect on β cell survival. The WJ MSCs themselves secreted insulin upon glucose challenge and expressed the pancreatic markers at both transcription and translational level (C-peptide, Insulin, Glucagon and Glut 2). Direct contact of MSCs with ICAs facilitate the highest viability under hypoxia as evidenced by fluorescein diacetate/propidium iodide and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cytokine analysis of the co-cultured ICAs revealed amplification of anti-inflammatory cytokine-like TGFβ and TNFα accompanied by depletion of pro-inflammatory cytokines. The increment in VEGF and PDGFa was also seen showing their ability to vascularize upon transplantation. This was further accompanied by reduction in total reactive oxygen species, nitric oxide, and super oxide ions and down-regulation of Caspase3, Caspase8, p53 and up regulation of Bcl2 confirming prevention of apoptosis in ICAs. There was a significant reduction in the expression of p38 protein in the presence of MSCs making the ICAs responsive to glucose. Taken together our data demonstrate for the first time that the WJ-MSC expressed pancreatic markers and their supplementation protected engineered islets against hypoxia, oxidative stress, and inflammatory cytokines by inhibiting p38 MAPK protein.

Keywords: hypoxia, islet-like cell aggregates, inflammatory cytokines, oxidative stress

Procedia PDF Downloads 153
155 Differential Expression of GABA and Its Signaling Components in Ulcerative Colitis and Irritable Bowel Syndrome Pathogenesis

Authors: Surbhi Aggarwal, Jaishree Paul

Abstract:

Background: Role of GABA has been implicated in autoimmune diseases like multiple sclerosis, type1 diabetes and rheumatoid arthritis where they modulate the immune response but role in gut inflammation has not been defined. Ulcerative colitis (UC) and diarrhoeal predominant irritable bowel syndrome (IBS-D) both involve inflammation of gastrointestinal tract. UC is a chronic, relapsing and idiopathic inflammation of gut. IBS is a common functional gastrointestinal disorder characterised by abdominal pain, discomfort and alternating bowel habits. Mild inflammation is known to occur in IBS-D. Aim: Aim of this study was to investigate the role of GABA in UC as well as in IBS-D. Materials and methods: Blood and biopsy samples from UC, IBS-D and controls were collected. ELISA was used for measuring level of GABA in serum of UC, IBS-D and controls. RT-PCR analysis was done to determine GABAergic signal system in colon biopsy of UC, IBS-D and controls. RT-PCR was done to check the expression of proinflammatory cytokines. CurveExpert 1.4, Graphpad prism-6 software were used for data analysis. Statistical analysis was done by unpaired, two-way student`s t-test. All sets of data were represented as mean± SEM. A probability level of p < 0.05 was considered statistically significant. Results and conclusion: Significantly decreased level of GABA and altered GABAergic signal system was detected in UC and IBS-D as compared to controls. Significantly increased expression of proinflammatory cytokines was also determined in UC and IBS-D as compared to controls. Hence we conclude that insufficient level of GABA in UC and IBS-D leads to overproduction of proinflammatory cytokines which further contributes to inflammation. GABA may be used as a promising therapeutic target for treatment of gut inflammation or other inflammatory diseases.

Keywords: diarrheal predominant irritable bowel syndrome, γ-aminobutyric acid (GABA), inflammation, ulcerative colitis

Procedia PDF Downloads 119
154 Low Term Aerobic Training Is Not Associated with Anti-Inflammatory in Obese Women

Authors: Zohreh Afsharmand, Sokhanguei Yahya

Abstract:

A growing body of literature suggests that that low-grade systemic inflammation associated to obesity plays a key role in the pathogenic mechanism of several disorders. In this study, the effect of 6 weeks aerobic training on IL-6 and IL-1B as inflammatory cytokine were investigated in adult obese women. For this purpose, 26 sedentary adult obese women were divided into exercise and control groups (n=12). Pre and post training of mentioned cytokines were measured in two groups. Student’s t-tests for paired samples were performed to determine whether there were significant within-group changes in the outcomes. A p value less than 0.05 was considered statistically significant. There were no statistically significant differences between the exercise and control groups with regard to anthropometrical markers or inflammatory cytokines. Despite the significant decrease in all anthropometrical markers, no significant differences were found in serum IL-6 and IL-1B by aerobic training with compared to baseline. Our findings indicate that aerobic training intervention for a short time is not associated with the anti-inflammatory property in obese women.

Keywords: aerobic training, cytokine, inflammation, obesity

Procedia PDF Downloads 247
153 In Vitro Effect of Cobalt(II) Chloride (CoCl₂)-Induced Hypoxia on Cytokine Production by Human Breast Cancer Cells

Authors: Radoslav Stojchevski, Leonid Poretsky, Dimiter Avtanski

Abstract:

Proinflammatory cytokines play an important role in cancer initiation and progression by mediating the intracellular communication between the cancer cells and tumor microenvironment. Increased tumor growth causing reduced oxygen concentration and oxygen pressure commonly result in hypoxia. Mechanistically, hypoxia is characterized by stabilization and nuclear translocation of hypoxia-inducible factor 1 alpha (HIF-1α) followed by propagation of molecular pathway cascade involving multiple downstream targets. Cobalt(II) chloride (CoCl₂) is commonly used to mimic hypoxia in experimental conditions since it directly induces the expression of HIF-1α. The aim of the present study was to investigate the in vitro effects and the molecular mechanisms by which hypoxia regulates the cytokine secretory profile of breast cancer cells. As a model for this study, we used several breast cancer cell lines bearing various molecular characteristics and metastatic potential (MDA-MB-231 (clauding low, ER-/PR-/HER²⁻), MCF-7 (luminal A, ER⁺/PR⁺/HER²⁻), and BT-474 (liminal B, ER⁺/PR⁺/HER²⁺)). We demonstrated that breast cancer cells secrete numerous cytokines and cytokine ligands, including interleukins, chemokines, and growth factors. Treatment with CoCl₂significantly modulated the breast cancer cells' cytokine expression in a concentration- and time-dependent manner. These effects were mediated via activation of several signaling pathways (JNK/SAPK1, NF-κB, STAT5A/B, and Erk/MAPK1/2). Taken together, the present data define some of the molecular mechanisms by which hypoxia affects the breast cancer cells' cytokine secretory profile, thus contributing to the development of novel therapies for metastatic breast cancer.

Keywords: breast cancer, cytokines, cobalt(II) chloride (CoCl₂), hypoxia

Procedia PDF Downloads 42
152 Increased Cytolytic Activity of Effector T-Cells against Cholangiocarcinoma Cells by Self-Differentiated Dendritic Cells with Down-Regulation of Interleukin-10 and Transforming Growth Factor-β Receptors

Authors: Chutamas Thepmalee, Aussara Panya, Mutita Junking, Jatuporn Sujjitjoon, Nunghathai Sawasdee, Pa-Thai Yenchitsomanus

Abstract:

Cholangiocarcinoma (CCA) is an aggressive malignancy of bile duct epithelial cells in which the standard treatments, including surgery, radiotherapy, chemotherapy, and targeted therapy are partially effective. Many solid tumors including CCA escape host immune responses by creating tumor microenvironment and generating immunosuppressive cytokines such as interleukin-10 (IL-10) and transforming growth factor-β (TGF-β). These cytokines can inhibit dendritic cell (DC) differentiation and function, leading to decreased activation and response of effector CD4+ and CD8+ T cells for cancer cell elimination. To overcome the effects of these immunosuppressive cytokines and to increase ability of DC to activate effector CD4+ and CD8+ T cells, we generated self-differentiated DCs (SD-DCs) with down-regulation of IL-10 and TGF-β receptors for activation of effector CD4+ and CD8+ T cells. Human peripheral blood monocytes were initially transduced with lentiviral particles containing the genes encoding GM-CSF and IL-4 and then secondly transduced with lentiviral particles containing short-hairpin RNAs (shRNAs) to knock-down mRNAs of IL-10 and TGF-β receptors. The generated SD-DCs showed up-regulation of MHC class II (HLA-DR) and co-stimulatory molecules (CD40 and CD86), comparable to those of DCs generated by convention method. Suppression of IL-10 and TGF-β receptors on SD-DCs by specific shRNAs significantly increased levels of IFN-γ and also increased cytolytic activity of DC-activated effector T cells against CCA cell lines (KKU-213 and KKU-100), but it had little effect to immortalized cholangiocytes (MMNK-1). Thus, SD-DCs with down-regulation of IL-10 and TGF-β receptors increased activation of effector T cells, which is a recommended method to improve DC function for the preparation of DC-activated effector T cells for adoptive T-cell therapy.

Keywords: cholangiocarcinoma, IL-10 receptor, self-differentiated dendritic cells, TGF-β receptor

Procedia PDF Downloads 40
151 Studying the Antiapoptotic Activity of Β Cells from Cord Blood Based Mesenchymal Stem Cells as an Approach to Treat Diabetes Mellitus

Authors: Parcha Sreenivasa Rao, P. Lakshmi

Abstract:

Diabetes Mellitus is metabolic disorder, characterized by high glucose levels in the blood due to one of the reason i.e., the death of β cells. The lack of β cells leads to the reduced insulin levels. The β cell death generally occurs due to apoptosis induced by the several cytokines. IL-1β, IFN- ϒ and TNF –α cytokines that are generally cause apoptosis to the β cell. The nutrient based apoptosis is generally seen with high glucose and free fatty acids. It is also noted that the β cell death triggered by Fas ligand and its receptor Fas at the surface of the activated CD8+ T- lymphocytes. Reports also reveal that the β cell apoptosis is under control of the transcription factors NF-kB and STAT- 1. The arresting or opposing of the β cell apoptosis can be overcome by the different growth factors like GLP-1, growth hormone, prolactin, VEGF, Dipeptidyl peptidase-4, Vildagliptin, suberoylanilidehydroxamic acid, trichistatin-A, XIAP, Bcl-2, FGF-21. Present investigation explains antiapoptotic property of the β cells derived from the mesenchymal stem cells of umbilical cord.

Keywords: stem cells, umblical cord, diabetes, apoptosis

Procedia PDF Downloads 237
150 Resistance Training and Ginger Consumption on Cytokines Levels

Authors: Alireza Barari, Ahmad Abdi

Abstract:

Regular body trainings cause adaption in various system in body. One of the important effect of body training is its effect on immune system. It seems that cytokines usually release after long period exercises or some exercises which cause skeletal muscular damages. If some of the cytokines which cause responses such as inflammation of cells in skeletal muscles, with manipulating of training program, it can be avoided or limited from those exercises which induct cytokines release. Ginger plant is a kind of medicinal plants which is known as a anti inflammation plant. This plant is as most precedence medicinal plants in medicine science especially in inflammation cure. The aim of the present study was the effect of selected resistance training and consumption of ginger extract on IL-1α and TNFα untrained young women. The population includes young women interested in participating in the study with the average of 30±2 years old from Abbas Abad city among which 32 participants were chosen randomly and divided into 4 four groups, resistance training (R), resistance training and ginger consumption(RG), Ginger consumption(G)and Control group(C). The training groups performed circuit resistance training at the intensity of 65-75% one repeat maximum, 3 days a week for 6 weeks. Besides resistance training, subjects were given either ginseng (5 mg/kg per day) or placebo. Prior to and 48 hours after interventions body composition was measured and blood samples were taken in order to assess serum levels of IL-1α and TNFα. Plasma levels of cytokines were measured with commercially available ELISA Kits.IL-1α kit and TNFα kit were used in this research. To demonstrate the effectiveness of the independent variable and the comparison between groups, t-test and ANOVA were used. To determine differences between the groups, the Scheffe test was used that showed significant changes in any of the variables. we observed that circuit resistance training in R and RG groups can significant decreased in weight and body mass index in untrained females (p<0.05). The results showed a significant decreased in the mean level of IL-1α levels before and after the training period in G group (p=0.046) and RG group (p=0.022). Comparison between groups also showed there was significant difference between groups R-RG and RG-C. Intergroup comparison results showed that the mean levels of TNFα before and after the training in group G (p=0.044) and RG (p=0.037), significantly decreased. Comparison between groups also showed there was significant difference between groups R–RG , R-G ,RG-C and G-C. The research shows that circuit resistance training with reducing overload method results in systemic inflammation had significant effect on IL-1α levels and TNFα. Of course, Ginger can counteract the negative effects of resistance training exercise on immune function and stability of the mast cell membrane. Considerable evidence supported the anti-inflammatory properties of ginger for several constituents, especially gingerols, shogaols, paradols, and zingerones, through decreased cytokine gene TNF α and IL-1Α expression and inhibition of cyclooxygenase 1 and 2. These established biological actions suggest that ingested ginger could block the increase in IL-1α.

Keywords: resistance training, ginger, IL-1α , TNFα

Procedia PDF Downloads 329