Search results for: in vitro drug release
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3984

Search results for: in vitro drug release

2604 Accelerated Molecular Simulation: A Convolution Approach

Authors: Jannes Quer, Amir Niknejad, Marcus Weber

Abstract:

Computational Drug Design is often based on Molecular Dynamics simulations of molecular systems. Molecular Dynamics can be used to simulate, e.g., the binding and unbinding event of a small drug-like molecule with regard to the active site of an enzyme or a receptor. However, the time-scale of the overall binding event is many orders of magnitude longer than the time-scale of simulation. Thus, there is a need to speed-up molecular simulations. In order to speed up simulations, the molecular dynamics trajectories have to be ”steared” out of local minimizers of the potential energy surface – the so-called metastabilities – of the molecular system. Increasing the kinetic energy (temperature) is one possibility to accelerate simulated processes. However, with temperature the entropy of the molecular system increases, too. But this kind ”stearing” is not directed enough to stear the molecule out of the minimum toward the saddle point. In this article, we give a new mathematical idea, how a potential energy surface can be changed in such a way, that entropy is kept under control while the trajectories are still steared out of the metastabilities. In order to compute the unsteared transition behaviour based on a steared simulation, we propose to use extrapolation methods. In the end we mathematically show, that our method accelerates the simulations along the direction, in which the curvature of the potential energy surface changes the most, i.e., from local minimizers towards saddle points.

Keywords: extrapolation, Eyring-Kramers, metastability, multilevel sampling

Procedia PDF Downloads 328
2603 The Pharmacogenetics of Type 1 Cannabinoid Receptor (CB1) Gene Associated with Adverse Drug Reactions in Thai Patients

Authors: Kittitara Chunlakittiphan, Patompong Satapornpong

Abstract:

Introduction: The variation of genetics affects how our body responds to pharmaceuticals elucidates the correlation between long-term use of medical cannabis and adverse drug reactions (ADRs). Medical cannabis is regarded as the treatment for chronic pain, cancer pain, acute pain, psychological disorders, multiple sclerosis and migraine management. However, previous studies have shown that delta-9-Tetrahydrocannabinol (THC), an ingredient found in cannabis, was the cause of ADRs in CB1 receptors found in humans. Previous research suggests that distributions of the cannabinoid type 1 (CB1) receptor gene and pharmacogenetic markers, which vary amongst different populations, might affect incidences of ADRs. Although there is an evident need to investigate the level of the CB1 receptor gene (rs806365), studies on the distribution of CB1-pharmacogenetics markers in Thai patients are limited. Objective: Therefore, the aim of this study is to investigate the distribution of the rs806365 polymorphism in Thai patients who have been treated with medical cannabis. Materials and Methods: We enrolled 31 Thai patients with THC-induced ADRs and 34 THC-tolerant controls to take part in this study. All patients with THC-induced ADRs were accessed through a review of medical records by physicians. EDTA blood of 3ml was collected to obtain the CNR1 gene (rs806365) and genotyping of this gene was conducted using the real-time PCR ViiA7 (ABI, Foster City, CA, USA) following the manufacturer’s instruction. Results: The sample consisted of 65 patients (40/61.54%) were females and (25/38.46%) were males, with an age range of 19-87 years, who have been treated with medical cannabis. In this study, the most common THC-induced ADRs were dry mouth and/or dry throat, tachycardia, nausea, and arrhythmia. Across the whole sample, we found that 52.31% of Thai patients carried a heterozygous variant (rs806365, CT allele). Moreover, the number of rs806365 (CC, homozygous variant) carriers totaled seventeen people (26.15%) amongst the subjects of Thai patients treated with medical cannabis. Furthermore, 17 out of 22 patients (77.27%) who experienced severe ADRs: Tachycardia and/or arrhythmia, carried an abnormal rs806365 gene (CT and CC alleles). Conclusions: The results propose that the rs806365 gene is widely distributed amongst the Thai population and there is a link between this gene and vulnerability to developing THC-induced ADRs after being treated with medical cannabis. Therefore, it is necessary to screen for the rs806365 gene before using medical cannabis to treat a patient.

Keywords: rs806365, THC-induced adverse drug reactions, CB1 receptor, Thai population

Procedia PDF Downloads 101
2602 Evaluation of Trabectedin Safety and Effectiveness at a Tertiary Cancer Center at Qatar: A Retrospective Analysis

Authors: Nabil Omar, Farah Jibril, Oraib Amjad

Abstract:

Purpose: Trabecatine is a is a potent marine-derived antineoplastic drug which binds to the minor groove of the DNA, bending DNA towards the major groove resulting in a changed conformation that interferes with several DNA transcription factors, repair pathways and cell proliferation. Trabectedin was approved by the European Medicines Agency (EMA; London, UK) for the treatment of adult patients with advanced stage soft tissue sarcomas in whom treatment with anthracyclines and ifosfamide has failed, or for those who are not candidates for these therapies. The recommended dosing regimen is 1.5 mg/m2 IV over 24 hours every 3 weeks. The purpose of this study was to comprehensively review available data on the safety and efficacy of trabectedin used as indicated for patients at a Tertiary Cancer Center at Qatar. Methods: A medication administration report generated in the electronic health record identified all patients who received trabectedin between November 1, 2015 and November 1, 2017. This retrospective chart review evaluated the indication of trabectedin use, compliance to administration protocol and the recommended monitoring parameters, number of patients improved on the drug and continued treatment, number of patients discontinued treatment due to side-effects and the reported side effects. Progress and discharged notes were utilized to report experienced side effects during trabectedin therapy. A total of 3 patients were reviewed. Results: Total of 2 out of 3 patients who received trabectedin were receiving it for non-FDA and non-EMA, approved indications; metastatic rhabdomyosarcoma and ovarian cancer stage IV with poor prognosis. And only one patient received it as indicated for leiomyosarcoma of left ureter with metastases to liver, lungs and bone. None of the patients has continued the therapy due to development of serious side effects. One patient had stopped the medication after one cycle due to disease progression and transient hepatic toxicity, the other one had disease progression and developed 12 % reduction in LVEF after 12 cycles of trabectedin, and the third patient deceased, had disease progression on trabectedin after the 10th cycle that was received through peripheral line which resulted in developing extravasation and left arm cellulitis requiring debridement. Regarding monitoring parameters, at baseline the three patients had ECHO, and Creatine Phosphokinase (CPK) but it was not monitored during treatment as recommended. Conclusion: Utilizing this medication as indicated with performing the appropriate monitoring parameters as recommended can benefit patients who are receiving it. It is important to reinforce the intravenous administration via central intravenous line, the re-assessment of left ventricular ejection fraction (LVEF) by echocardiogram or multigated acquisition (MUGA) scan at 2- to 3-month intervals thereafter until therapy is discontinued, and CPK and LFTs levels prior to each administration of trabectedin.

Keywords: trabectedin, drug-use evaluation, safety, effectiveness, adverse drug reaction, monitoring

Procedia PDF Downloads 143
2601 Magnitude and Outcome of Resuscitation Activities at Rwanda Military Hospital for the Period of April 2013-September 2013

Authors: Auni Idi Muhire

Abstract:

Background: Prior to April 2012, resuscitations were often ineffective resulting in poor patient outcomes. An initiative was implemented at Rwanda Military Hospital (RMH) to review root causes and plan strategies to improve patient outcomes. An interdisciplinary committee was developed to review this problem. Purpose: Analyze the frequency, obstacles, and outcome of patient resuscitation following cardiac and/or respiratory arrest. Methods: A form was developed to allow recording of all actions taken during resuscitation including response times, staff present, and equipment and medications used. Results:-The patient population requiring the most resuscitation effort are the intensive care patients, most frequently the neonatal the intensive care patients (42.8%) -Despite having trained staff representatives, not all resuscitations follow protocol -Lack of compliance with drug administration guidelines was noted, particularly in initiating use of drugs despite the drug being available (59%). Lesson Learned: Basic Life Support training for interdisciplinary staff resulted in more effective response to cardiac and/or respiratory arrest at RMH. Obstacles to effective resuscitation included number of staff, knowledge and skill level of staff, availability of appropriate equipment and medications, staff communication, and patient Do not Attempt Resuscitation (DNR) status.

Keywords: resuscitation, case analysis of knowledge versus practice, intensive care, critical care

Procedia PDF Downloads 278
2600 Biomimetic Systems to Reveal the Action Mode of Epigallocatechin-3-Gallate in Lipid Membrane

Authors: F. Pires, V. Geraldo, O. N. Oliveira Jr., M. Raposo

Abstract:

Catechins are powerful antioxidants which have attractive properties useful for tumor therapy. Considering their antioxidant activity, these molecules can act as a scavenger of the reactive oxygen species (ROS), alleviating the damage of cell membrane induced by oxidative stress. The complexity and dynamic nature of the cell membrane compromise the analysis of the biophysical interactions between drug and cell membrane and restricts the transport or uptake of the drug by intracellular targets. To avoid the cell membrane complexity, we used biomimetic systems as liposomes and Langmuir monolayers to study the interaction between catechin and membranes at the molecular level. Liposomes were formed after the dispersion of anionic 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)(sodium salt) (DPPG) phospholipids in an aqueous solution, which mimic the arrangement of lipids in natural cell membranes and allows the entrapment of catechins. Langmuir monolayers were formed after dropping amphiphilic molecules, DPPG phospholipids, dissolved in an organic solvent onto the water surface. In this work, we mixed epigallocatechin-3-gallate (EGCG) with DPPG liposomes and exposed them to ultra-violet radiation in order to evaluate the antioxidant potential of these molecules against oxidative stress induced by radiation. The presence of EGCG in the mixture decreased the rate of lipid peroxidation, proving that EGCG protects membranes through the quenching of the reactive oxygen species. Considering the high amount of hydroxyl groups (OH groups) on structure of EGCG, a possible mechanism to these molecules interact with membrane is through hydrogen bonding. We also investigated the effect of EGCG at various concentrations on DPPG Langmuir monolayers. The surface pressure isotherms and infrared reflection-absorption spectroscopy (PM-IRRAS) results corroborate with absorbance results preformed on liposome-model, showing that EGCG interacts with polar heads of the monolayers. This study elucidates the physiological action of EGCG which can be incorporated in lipid membrane. These results are also relevant for the improvement of the current protocols used to incorporate catechins in drug delivery systems.

Keywords: catechins, lipid membrane, anticancer agent, molecular interactions

Procedia PDF Downloads 233
2599 Epigenetic Drugs for Major Depressive Disorder: A Critical Appraisal of Available Studies

Authors: Aniket Kumar, Jacob Peedicayil

Abstract:

Major depressive disorder (MDD) is a common and important psychiatric disorder. Several clinical features of MDD suggest an epigenetic basis for its pathogenesis. Since epigenetics (heritable changes in gene expression not involving changes in DNA sequence) may underlie the pathogenesis of MDD, epigenetic drugs such as DNA methyltransferase inhibitors (DNMTi) and histone deactylase inhibitors (HDACi) may be useful for treating MDD. The available literature indexed in Pubmed on preclinical drug trials of epigenetic drugs for the treatment of MDD was investigated. The search terms we used were ‘depression’ or ‘depressive’ and ‘HDACi’ or ‘DNMTi’. Among epigenetic drugs, it was found that there were 3 preclinical trials using HDACi and 3 using DNMTi for the treatment of MDD. All the trials were conducted on rodents (mice or rats). The animal models of depression that were used were: learned helplessness-induced animal model, forced swim test, open field test, and the tail suspension test. One study used a genetic rat model of depression (the Flinders Sensitive Line). The HDACi that were tested were: sodium butyrate, compound 60 (Cpd-60), and valproic acid. The DNMTi that were tested were: 5-azacytidine and decitabine. Among the three preclinical trials using HDACi, all showed an antidepressant effect in animal models of depression. Among the 3 preclinical trials using DNMTi also, all showed an antidepressant effect in animal models of depression. Thus, epigenetic drugs, namely, HDACi and DNMTi, may prove to be useful in the treatment of MDD and merit further investigation for the treatment of this disorder.

Keywords: DNA methylation, drug discovery, epigenetics, major depressive disorder

Procedia PDF Downloads 187
2598 Methodology for Risk Assessment of Nitrosamine Drug Substance Related Impurities in Glipizide Antidiabetic Formulations

Authors: Ravisinh Solanki, Ravi Patel, Chhaganbhai Patel

Abstract:

Purpose: The purpose of this study is to develop a methodology for the risk assessment and evaluation of nitrosamine impurities in Glipizide antidiabetic formulations. Nitroso compounds, including nitrosamines, have emerged as significant concerns in drug products, as highlighted by the ICH M7 guidelines. This study aims to identify known and potential sources of nitrosamine impurities that may contaminate Glipizide formulations and assess their presence. By determining observed or predicted levels of these impurities and comparing them with regulatory guidance, this research will contribute to ensuring the safety and quality of combination antidiabetic drug products on the market. Factors contributing to the presence of genotoxic nitrosamine contaminants in glipizide medications, such as secondary and tertiary amines, and nitroso group-complex forming molecules, will be investigated. Additionally, conditions necessary for nitrosamine formation, including the presence of nitrosating agents, and acidic environments, will be examined to enhance understanding and mitigation strategies. Method: The methodology for the study involves the implementation of the N-Nitroso Acid Precursor (NAP) test, as recommended by the WHO in 1978 and detailed in the 1980 International Agency for Research on Cancer monograph. Individual glass vials containing equivalent to 10mM quantities of Glipizide is prepared. These compounds are dissolved in an acidic environment and supplemented with 40 mM NaNO2. The resulting solutions are maintained at a temperature of 37°C for a duration of 4 hours. For the analysis of the samples, an HPLC method is employed for fit-for-purpose separation. LC resolution is achieved using a step gradient on an Agilent Eclipse Plus C18 column (4.6 X 100 mm, 3.5µ). Mobile phases A and B consist of 0.1% v/v formic acid in water and acetonitrile, respectively, following a gradient mode program. The flow rate is set at 0.6 mL/min, and the column compartment temperature is maintained at 35°C. Detection is performed using a PDA detector within the wavelength range of 190-400 nm. To determine the exact mass of formed nitrosamine drug substance related impurities (NDSRIs), the HPLC method is transferred to LC-TQ-MS/MS with the same mobile phase composition and gradient program. The injection volume is set at 5 µL, and MS analysis is conducted in Electrospray Ionization (ESI) mode within the mass range of 100−1000 Daltons. Results: The samples of NAP test were prepared according to the protocol. The samples were analyzed using HPLC and LC-TQ-MS/MS identify possible NDSRIs generated in different formulations of glipizide. It was found that the NAP test generated a various NDSRIs. The new finding, which has not been reported yet, discovered contamination of Glipizide. These NDSRIs are categorised based on the predicted carcinogenic potency and recommended its acceptable intact in medicines. The analytical method was found specific and reproducible.

Keywords: NDSRI, nitrosamine impurities, antidiabetic, glipizide, LC-MS/MS

Procedia PDF Downloads 33
2597 In Vitro Effects of Azadirachta indica Leaves Extract Against Albugo Candida, the Causative Agent of White Blisters Disease of Brassica Oleraceae L., Var. Italica

Authors: Affiah D. U., Katuri I. P., Emefiene M. E., Amienyo C. A.

Abstract:

Broccoli (Brassica oleraceae L., var. italica) is one of the most important vegetables that is high in nutrients and bioactive compounds. It easily grown on a wide range of soil types and is adaptable to many different climatic conditions. This study was carried out within Jos North and environs in vitro to evaluate Neem (Azadirachta indica) leaves extract against Albugo candida, the causative agent of white blisters disease of broccoli. Through the survey, prevalence and incidence were accessed and a fluffy white growth symptom on the underside of leaves was also observed on the field. Infected leaves samples were collected from three different farms namely: Farin Gada, Naraguta, and Juth and the organism associated with the disease was isolated. Pathogenicity test carried out revealed the fungal isolate Albugo candida to be responsible for the disease. Antimicrobial susceptibility test was performed using agar well diffusion method to determine the minimum inhibitory concentrations of two extract of Azadirachta indica leaves against the organism. Ethanolic extract had the highest antifungal activities of 3.30±0.21 - 17.61± 0.11 while aqueous extract had the least antifungal activities of 0.00±0.00 - 13.23±0.12. The minimum inhibitory concentration of aqueous was 100 mg/ml while its minimum fungicidal concentration was at 200 mg/ml. For ethanol, the minimum inhibitory concentration was 50 mg/ml while its minimum fungicidal concentration was 100 mg/ml. Plants being less toxic in usage over synthetic or inorganic chemicals makes them easy to handle, easily accessible and renewable. Due to the biosafety of plant extracts and its availability since the plant-based extracts of the two different solvents were found to be effective against the test organism hence, it is recommended for in-depth research to make it readily available for control of other pathogens and pests.

Keywords: antifungal, biocontrol, broccoli, fungi

Procedia PDF Downloads 68
2596 Electrophoretic Changes in Testis and Liver of Mice after Exposure to Diclofenac Sodium

Authors: Deepak Mohan, Sushma Sharma, Mohammad Asif

Abstract:

Diclofenac sodium being one of the most common non-steroidal anti-inflammatory drugs is normally used as painkiller and to reduce inflammation. The drug is known to alter the enzymatic activities of acid and alkaline phosphatase, glutamate oxaloacetate transaminase and glutamate pyruvate transaminases. The drug also results in change in the concentration of proteins and lipids in the body. The present study is an attempt to study different biochemical changes electrophoretically due to administration of different doses of diclofenac (4mg/kg/body weight and 14mg/kg/body weight) on liver and testes of mice from 7-28 days of investigation. Homogenization of the tissue was done, supernatant separated was loaded in the gel and native polyacrylamide gel electrophoresis was conducted. Diclofenac administration resulted in alterations of all these biochemical parameters which were observed in native polyacrylamide gel electrophoretic studies. The severe degenerative changes as observed during later stages of the experiment showed correlation with increase or decrease in the activities of all the enzymes studied in the present investigation. Image analysis of gel in liver showed a decline of 7.4 and 5.3 % in low and high dose group after 7 days whereas a decline of 9.6 and 7.5% was registered after 28 days of investigation. Similar analysis for testis also showed an appreciable decline in the activity of alkaline phosphatase after 28 days. Gel analysis of serum was also performed to find a correlation in the enzymatic activities between the tissue and blood.

Keywords: diclofenac, inflammation, polyacrylamide, phosphatase

Procedia PDF Downloads 152
2595 Clarification of Taxonomic Confusions among Adulterated Drugs Coffee Seena and Seena Weed through Systematic and Pharmaceutical Markers

Authors: Shabnum Shaheen, Nida Haroon, Farah Khan, Sumera Javad, Mehreen Jalal, Samina Sarwar

Abstract:

Coffee Senna is pharmaceutically very important and used for multiple health disorders such as gastric pains, indigestion, snakebites, asthma and fever, tuberculosis and menstrual problems. However, its immense medicinal value and great demand lead to adulteration issue which could be injurious for users. Some times its adulterant Seena weed (Senna occidentalis L.) is used as its substitute which definitely not as effective as Coffee Senna. Hence, the present study was undertaken to provide some tools for systematic and pharmaceutical authentication of a shrubby plant Coffee Senna (Cassia occidentalis Linn.). These parameters included macro and micro morphological characters, anatomical and palynomorph characterization, solubility, fluorescence and phytochemical analysis. By the application of these parameters acquired results revealed that, these two plants are distinct from each other. The Coffee Seena was found to be an annual shrub with trilobed pollen, diacytic, paracytic and anisocytic stomata whereas the Seena weed stands out as an annual or perennial herb with spheroidal and circular pollen and paracytic type of stomata. The powdered drug of Coffee seena is dark grayish green whereas the powdered drug of Seena weed is light green in color. These findings are constructive in authentic identification of these plants.

Keywords: coffee senna, Senna weed, taxonomic evaluation, pharmaceutical markers

Procedia PDF Downloads 513
2594 Numerical Study on Jatropha Oil Pool Fire Behavior in a Compartment

Authors: Avinash Chaudhary, Akhilesh Gupta, Surendra Kumar, Ravi Kumar

Abstract:

This paper presents the numerical study on Jatropha oil pool fire in a compartment. A fire experiment with jatropha oil was conducted in a compartment of size 4 m x 4 m x m to study the fire development and temperature distribution. Fuel is burned in the center of the compartment in a pool diameter of 0.5 m with an initial fuel depth of 0.045 m. Corner temperature in the compartment, doorway temperature and hot gas layer temperature at various locations are measured. Numerical simulations were carried out using Fire Dynamics Simulator (FDS) software at grid size of 0.05 m, 0.12 m and for performing simulation heat release rate of jatropha oil measured using mass loss method were inputted into FDS. Experimental results shows that like other fuel fires, the whole combustion process can be divided into four stages: initial stage, growth stage, steady profile or developed phase and decay stage. The fire behavior shows two zone profile where upper zone consists of mainly hot gases while lower zone is relatively at colder side. In this study, predicted temperatures from simulation are in good agreement in upper zone of compartment. Near the interface of hot and cold zone, deviations were reported between the simulated and experimental results which is probably due to the difference between the predictions of smoke layer height by FDS. Also, changing the grid size from 0.12 m to 0.05 m does not show any effect in temperatures at upper zone while in lower zone, grid size of 0.05 m showed satisfactory agreement with experimental results. Numerical results showed that calculated temperatures at various locations matched well with the experimental results. On the whole, an effective method is provided with reasonable results to study the burning characteristics of jatropha oil with numerical simulations.

Keywords: jatropha oil, compartment fire, heat release rate, FDS (fire dynamics simulator), numerical simulation

Procedia PDF Downloads 257
2593 Effect of Engineered Low Glycemic Foods on Cancer Progression and Healthy State

Authors: C. Panebianco, K. Adamberg, S. Adamberg, C. Saracino, M. Jaagura, K. Kolk, A. Di Chio, P. Graziano, R. Vilu, V. Pazienza

Abstract:

Background/Aims: Despite recent advances in treatment options, a modest impact on the outcome of the pancreatic cancer (PC) is observed so far. Short-term fasting cycles have the potential to improve the efficacy of chemotherapy against PC. However, diseased people may refuse to follow the fasting regimen and fasting may worsen the weight loss often occurring in cancer patients. Therefore, alternative approaches are needed. The aim of this study was to assess the effect of Engineered Low glycemic food ELGIF mimicking diet on growth of cancer cell lines in vitro and in an in vivo pancreatic cancer mouse xenograft model. Materials and Methods: BxPC-3, MiaPaca-2 and Panc-1 cells were cultured in control and ELGIF mimicking diet culturing condition to evaluate the tumor growth and proliferation pathways. Pancreatic cancer xenograft mice were subjected to ELGIF to assess the tumor volume and weight as compared to mice fed with control diet. Results: Pancreatic cancer cells cultured in ELGIF mimicking medium showed decreased levels of proliferation as compared to those cultured in the standard medium. Consistently, xenograft pancreatic cancer mice subjected to ELGIF diet displayed a significant decrease in tumor growth. Conclusion: A positive effect of ELGIF diet on proliferation in vitro is associated with the decrease of tumor progression in the in vivo PC xenograft mouse model. These results suggest that engineered dietary interventions could be supportive as synergistic approach to enhance the efficacy of existing cancer treatments in pancreatic cancer patients.

Keywords: functional food, microbiota, mouse model, pancreatic cancer

Procedia PDF Downloads 290
2592 Immunomodulatory Activity of Polysaccharide-Protein Complex Isolated from the Sclerotia of Polyporus Rhinocerus in Murine Macrophages

Authors: Chaoran Liu

Abstract:

Bioactive polysaccharides and polysaccharide-protein complex derived from mushrooms and fungi have a wide range of immunomodulatory activity with low side-effects and have therefore the potential to be developed as an adjuvant in cancer therapies. Mushrooms sclerotium is rich in polysaccharides and the polysaccharides isolated from the sclerotium of Polyporus rhinocerus have shown potent in vivo and in vitro immunomodulatory effects. Macrophages are considered to be an important component of the innate immune response against bacterial infection and cancer. To better understanding the immunomodulatory effects and its underlying mechanisms of sclerotial water-soluble polysaccharides extracted from P. rhinocerus on macrophages, the objectives of this study are to purify the water-soluble novel sclerotial polysaccharides and to characterize the structure and properties as well as to study the detailed molecular mechanisms of the in vitro immunomodulating effects in murine macrophages. The hot water-soluble fraction PRW from the sclerotium of P. rhinocerus was obtained using solvent extraction. PRW was further fractionated by membrane ultrafiltration to a give a fraction (PRW1) with molecular mass less than 50 kDa. PRW1 was characterized to be a polysaccharide-protein complex composed of 45.7% polysaccharide and 44.2% protein. The chemical structure of the carbohydrate moiety of PRW1 was elucidated by GC and FTIR to be mainly beta-D-glucan with trace amount of galactose and mannose. The immunomodulatory effects of PRW1 on murine RAW 264.7 macrophages were demonstrated in terms of the increase in nitric oxide production and cytokine production. Mechanistically, PRW1 initiates ERK phosphorylation to activate macrophages within 15 min and significantly improves the expression level of inducible NOS (iNOS) from 6 h after treatment. In summary, this study indicates that PRW1 is a potent immunomodulatory agent for macrophages and suggests that mushroom sclerotia from Polyporus rhinocerus requires for further investigation in cancer research.

Keywords: Polyporus rhinocerus, mushroom sclerotia, Polysaccharide-Protein Complex, macrophage activation

Procedia PDF Downloads 233
2591 Production of Camel Nanobodies against of Anti-Morphine-3-Glucuronide for the Development of a Biosensor for Detecting Illicit Drug

Authors: Shirin Jalili, Sadegh Hasannia, Hadi Shirzad, Afshin Khara

Abstract:

Morphine is one of the most medicinally important analgesics and narcotics. Structurally, it is classified as an alkaloid because of the presence of nitrogen. Its structure is similar to that of codeine, thebaine, and heroin. An immunoassay to accurately discriminate between these analogous alkaloids would be highly beneficial. A key factor for such an assay is specificity with high sensitivity, which is totally dependent on the antibody employed. However, most antibodies against haptens are polyclonal serum antibodies that exhibit significant cross-reactivities with closely related compounds. The camel-derived single-chain antibody fragments (VHH) are the smallest molecules with antigen-binding capacity, possessing unique properties compared to other conventional antibodies. In this study, a library containing the VHH genes of a camel immunized with with morphine conjugated BSA following phage display technology was generated. By screening the camel-derived variable region of the heavy chain cDNA phage display library with the ability to bind the desired hapten, we obtained some nanobodies that recognize this hapten. Phage display expression of the Nbs from this library and pannings against this hapten resulted in a clear enrichment of four distinct Nb-displaying phages with specificity for morphine that could be a potential target site for the development of new strategies for the development of a biosensor for detecting illicit drug.

Keywords: phage display, nanobody, Morphine-3, glucuronide, ELISA, biosensor

Procedia PDF Downloads 425
2590 Investigation of the IL23R Psoriasis/PsA Susceptibility Locus

Authors: Shraddha Rane, Richard Warren, Stephen Eyre

Abstract:

L-23 is a pro-inflammatory molecule that signals T cells to release cytokines such as IL-17A and IL-22. Psoriasis is driven by a dysregulated immune response, within which IL-23 is now thought to play a key role. Genome-wide association studies (GWAS) have identified a number of genetic risk loci that support the involvement of IL-23 signalling in psoriasis; in particular a robust susceptibility locus at a gene encoding a subunit of the IL-23 receptor (IL23R) (Stuart et al., 2015; Tsoi et al., 2012). The lead psoriasis-associated SNP rs9988642 is located approximately 500 bp downstream of IL23R but is in tight linkage disequilibrium (LD) with a missense SNP rs11209026 (R381Q) within IL23R (r2 = 0.85). The minor (G) allele of rs11209026 is present in approximately 7% of the population and is protective for psoriasis and several other autoimmune diseases including IBD, ankylosing spondylitis, RA and asthma. The psoriasis-associated missense SNP R381Q causes an arginine to glutamine substitution in a region of the IL23R protein between the transmembrane domain and the putative JAK2 binding site in the cytoplasmic portion. This substitution is expected to affect the receptor’s surface localisation or signalling ability, rather than IL23R expression. Recent studies have also identified a psoriatic arthritis (PsA)-specific signal at IL23R; thought to be independent from the psoriasis association (Bowes et al., 2015; Budu-Aggrey et al., 2016). The lead PsA-associated SNP rs12044149 is intronic to IL23R and is in LD with likely causal SNPs intersecting promoter and enhancer marks in memory CD8+ T cells (Budu-Aggrey et al., 2016). It is therefore likely that the PsA-specific SNPs affect IL23R function via a different mechanism compared with the psoriasis-specific SNPs. It could be hypothesised that the risk allele for PsA located within the IL23R promoter causes an increase IL23R expression, relative to the protective allele. An increased expression of IL23R might then lead to an exaggerated immune response. The independent genetic signals identified for psoriasis and PsA in this locus indicate that different mechanisms underlie these two conditions; although likely both affecting the function of IL23R. It is very important to further characterise these mechanisms in order to better understand how the IL-23 receptor and its downstream signalling is affected in both diseases. This will help to determine how psoriasis and PsA patients might differentially respond to therapies, particularly IL-23 biologics. To investigate this further we have developed an in vitro model using CD4 T cells which express either wild type IL23R and IL12Rβ1 or mutant IL23R (R381Q) and IL12Rβ1. Model expressing different isotypes of IL23R is also underway to investigate the effects on IL23R expression. We propose to further investigate the variants for Ps and PsA and characterise key intracellular processes related to the variants.

Keywords: IL23R, psoriasis, psoriatic arthritis, SNP

Procedia PDF Downloads 168
2589 Genotoxic Effect of Tricyclieandidepressant Drug “Clomipramine Hydrochloride’ on Somatic and Germ Cells of Male Mice

Authors: Samia A. El-Fiky, F. A. Abou-Zaid, Ibrahim M. Farag, Naira M. Efiky

Abstract:

Clomipramine hydrochloride is one of the most used tricyclic antidepressant drug in Egypt. This drug contains in its chemical structure on two benzene rings. Benzene is considered to be toxic and clastogenic agent. So, the present study was designed to assess the genotoxic effect of Clomipramine hydrochloride on somatic and germ cells in mice. Three dose levels 0.195 (Low), 0.26 (Medium), and 0.65 (High) mg/kg.b.wt. were used. Seven groups of male mice were utilized in this work. The first group was employed as a control. In the remaining six groups, each of the above doses was orally administrated for two groups, one of them was treated for 5 days and the other group was given the same dose for 30 days. At the end of experiments, the animals were sacrificed for cytogenetic and sperm examination as well as histopathological investigations by using hematoxylin and eosin stains (H and E stains) and electron microscope. Concerning the sperm studies, these studies were confined to 5 days treatment with different dose levels. Moreover, the ultrastructural investigation by electron microscope was restricted to 30 days treatment with drug doses. The results of the dose dependent effect of Clomipramine showed that the treatment with three different doses induced increases of frequencies of chromosome aberrations in bone marrow and spermatocyte cells as compared to control. In addition, mitotic and meiotic activities of somatic and germ cells were declined. The treatments with medium or high doses were more effective for inducing significant increases of chromosome aberrations and significant decreases of cell divisions than treatment with low dose. The effect of high dose was more pronounced for causing such genetic deleterious in respect to effect of medium dose. Moreover, the results of the time dependent effect of Clomipramine observed that the treatment with different dose levels for 30 days led to significant increases of genetic aberrations than treatment for 5 days. Sperm examinations revealed that the treatment with Clomipramine at different dose levels caused significant increase of sperm shape abnormalities and significant decrease in sperm count as compared to control. The adverse effects on sperm shape and count were more obviousness by using the treatments with medium or high doses than those found in treatment with low dose. The group of mice treated with high dose had the highest rate of sperm shape abnormalities and the lowest proportion of sperm count as compared to mice received medium dose. In histopathological investigation, hematoxylin and eosin stains showed that, the using of low dose of Clomipramine for 5 or 30 days caused a little pathological changes in liver tissue. However, using medium and high doses for 5 or 30 days induced severe damages than that observed in mice treated with low dose. The treatment with high dose for 30 days gave the worst results of pathological changes in hepatic cells. Moreover, ultrastructure examination revealed, the mice treated with low dose of Clomipramine had little differences in liver histological architecture as compared to control group. These differences were confined to cytoplasmic inclusions. Whereas, prominent pathological changes in nuclei as well as dilated of rough Endoplasmic Reticulum (rER) were observed in mice treated with medium or high doses of Clomipramine drug. In conclusion, the present study adds evidence that treatments with medium or high doses of Clomipramine have genotoxic effects on somatic and germ cells of mice, as unwanted side effects. However, the using of low dose (especially for short time, 5 days) can be utilized as a therapeutic dose, where it caused relatively similar proportions of genetic, sperm, and histopathological changes as those found in normal control.

Keywords: clomipramine, mice, chromosome aberrations, sperm abnormalities, histopathology

Procedia PDF Downloads 423
2588 Tocotrienol Rich Fraction in Nicotine-Induced Embryos: Cytoskeletal Changes of Actin and Tubulin

Authors: Nurul Hamirah Kamsani, Mohd Hamim Rajikin, Nor Ashikin Mohamed Noor Khan, Sharaniza Abdul Rahim

Abstract:

Cytoskeletal structures, in particular actin and tubulin, provide a fundamental framework in all cells, including embryos. Under influence of nicotine, the cytoskeletal organization may be subjected to oxidative stress (OS) insult and cause alteration. Tocotrienol-rich fraction (TRF) is proven to enhance fertility better than the other sub-group of Vitamin E, tocopherols (TCPs). The objective of this study was to evaluate the effects of TRF on 1) actin and tubulin of 2- and 8-cell murine embryos and 2) the regulation of reactive oxygen species (ROS)-scavenging enzymes; induced by nicotine. Twenty four female Balb/C were subjected to either subcutaneous (sc) injection of 0.9% NaCl; sc injection of 3.0 mg/kg bw/day nicotine; sc injection of 3.0 mg/kg bw/day nicotine + oral gavage (OG) of 60 mg/kg bw/day TRF; or OG of 60 mg/kg bw/day TRF for 7 consecutive days. After superovulation and mating, animals were euthanized. 2-cell developing embryos were retrieved. 50% of the retrieved embryos were visualized under confocal laser staining microscopy (CLSM) for alterations of actin and tubulin. The remaining amount of embryos was cultured in vitro until 8-cell stage followed by CLSM visualization. Blood plasma was subjected to OS assays. Plasma malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined and analysed accordingly. At both 2- and 8-cell developing stages, actin intensities were significantly reduced in the nicotine group (p<0.001). After the intervention, actin intensity was significantly increased compared to that of the nicotine group (p<0.001). The same trend was seen in tubulin at both cell stages. TRF has minimized the deleterious effects of nicotine in actin and tubulin of both 2- and 8-cell developmental stages during pre-implantation embryonic development in mice in vitro. Levels of endogenous anti-oxidative enzymes were sustained close to control accompanied by decreased levels of OS biomarker.

Keywords: actin, nicotine, pre-implantation embryos, tocotrienol rich fraction, tubulin

Procedia PDF Downloads 150
2587 Binding Studies of Complexes of Anticancer Drugs with DNA and Enzymes Involved in DNA Replication Using Molecular Docking and Cell Culture Techniques

Authors: Fouzia Perveen, Rumana Qureshi

Abstract:

The presently studied twelve anticancer drugs are the cytotoxic agents which inhibit the replication of DNA and activity of enzymes involved in DNA replication namely topoisomerase-II, polymerase and helicase and have shown remarkable anticancer activity in clinical trials. In this study, we performed molecular docking studies of twelve antitumor drugs against DNA and DNA enzymes in the presence and absence of ascorbic acid (AA) and developed the quantitative structure-activity relationship (QSAR) model for anticancer activity screening. A number of electronic and steric descriptors were calculated using MOE software package. QSAR was established showing a correlation of binding strength with various physicochemical descriptors. Out of these twelve, eight cytotoxic drugs were tested on Non-Small Cell Lung Cancer cell lines (H-157 and H-1299) in the absence and presence of ascorbic acid and experimental IC50 values were calculated. From the docking studies, binding constants were calculated indicating the strength of drug-DNA and drug-enzyme complex formation and it was correlated to the IC50 values (both experimental and theoretical). These results can offer useful references for directing the molecular design of DNA enzyme inhibitor with improved anticancer activity.

Keywords: ascorbic acid, binding constant, cytotoxic agents, cell culture, DNA, DNA enzymes, molecular docking

Procedia PDF Downloads 427
2586 The Potential Impact of Big Data Analytics on Pharmaceutical Supply Chain Management

Authors: Maryam Ziaee, Himanshu Shee, Amrik Sohal

Abstract:

Big Data Analytics (BDA) in supply chain management has recently drawn the attention of academics and practitioners. Big data refers to a massive amount of data from different sources, in different formats, generated at high speed through transactions in business environments and supply chain networks. Traditional statistical tools and techniques find it difficult to analyse this massive data. BDA can assist organisations to capture, store, and analyse data specifically in the field of supply chain. Currently, there is a paucity of research on BDA in the pharmaceutical supply chain context. In this research, the Australian pharmaceutical supply chain was selected as the case study. This industry is highly significant since the right medicine must reach the right patients, at the right time, in right quantity, in good condition, and at the right price to save lives. However, drug shortages remain a substantial problem for hospitals across Australia with implications on patient care, staff resourcing, and expenditure. Furthermore, a massive volume and variety of data is generated at fast speed from multiple sources in pharmaceutical supply chain, which needs to be captured and analysed to benefit operational decisions at every stage of supply chain processes. As the pharmaceutical industry lags behind other industries in using BDA, it raises the question of whether the use of BDA can improve transparency among pharmaceutical supply chain by enabling the partners to make informed-decisions across their operational activities. This presentation explores the impacts of BDA on supply chain management. An exploratory qualitative approach was adopted to analyse data collected through interviews. This study also explores the BDA potential in the whole pharmaceutical supply chain rather than focusing on a single entity. Twenty semi-structured interviews were undertaken with top managers in fifteen organisations (five pharmaceutical manufacturers, five wholesalers/distributors, and five public hospital pharmacies) to investigate their views on the use of BDA. The findings revealed that BDA can enable pharmaceutical entities to have improved visibility over the whole supply chain and also the market; it enables entities, especially manufacturers, to monitor consumption and the demand rate in real-time and make accurate demand forecasts which reduce drug shortages. Timely and precise decision-making can allow the entities to source and manage their stocks more effectively. This can likely address the drug demand at hospitals and respond to unanticipated issues such as drug shortages. Earlier studies explore BDA in the context of clinical healthcare; however, this presentation investigates the benefits of BDA in the Australian pharmaceutical supply chain. Furthermore, this research enhances managers’ insight into the potentials of BDA at every stage of supply chain processes and helps to improve decision-making in their supply chain operations. The findings will turn the rhetoric of data-driven decision into a reality where the managers may opt for analytics for improved decision-making in the supply chain processes.

Keywords: big data analytics, data-driven decision, pharmaceutical industry, supply chain management

Procedia PDF Downloads 106
2585 Effective Apixaban Clearance with Cytosorb Extracorporeal Hemoadsorption

Authors: Klazina T. Havinga, Hilde R. H. de Geus

Abstract:

Introduction: Pre-operative coagulation management of Apixaban prescribed patients, a new oral anticoagulant (a factor Xa inhibitor), is difficult, especially when chronic kidney disease (CKD) causes drug overdose. Apixaban is not dialyzable due to its high level of protein binding. An antidote, Andexanet α, is available but expensive and has an unfavorable short half-life. We report the successful extracorporeal removal of Apixaban prior to emergency surgery with the CytoSorb® Hemoadsorption device. Methods: A 89-year-old woman with CKD, with an Apixaban prescription for atrial fibrillation, was presented at the ER with traumatic rib fractures, a flail chest, and an unstable spinal fracture (T12) for which emergency surgery was indicated. However, due to very high Apixaban levels, this surgery had to be postponed. Based on the Apixaban-specific anti-factor Xa activity (AFXaA) measurements at admission and 10 hours later, complete clearance was expected after 48 hours. In order to enhance the Apixaban removal and reduce the time to operation, and therefore reduce pulmonary complications, CRRT with CytoSorb® cartridge was initiated. Apixaban-specific anti-factor Xa activity (AFXaA) was measured frequently as a substitute for Apixaban drug concentrations, pre- and post adsorber, in order to calculate the adsorber-related clearance. Results: The admission AFXaA concentration, as a substitute for Apixaban drug levels, was 218 ng/ml, which decreased to 157 ng/ml after ten hours. Due to sustained anticoagulation effects, surgery was again postponed. However, the AFXaA levels decreased quickly to sub-therapeutic levels after CRRT (Multifiltrate Pro, Fresenius Medical Care, Blood flow 200 ml/min, Dialysate Flow 4000 ml/h, Prescribed renal dose 51 ml-kg-h) with Cytosorb® connected in series into the circuit was initiated (within 5 hours). The adsorber-related (indirect) Apixaban clearance was calculated every half hour (Cl=Qe * (AFXaA pre- AFXaA post/ AFXaA pre) with Qe=plasma flow rate calculated with Ht=0.38 and system blood flow rate 200 ml-min): 100 ml/min, 72 ml/min and 57 ml/min. Although, as expected, the adsorber-related clearance decreased quickly due to saturation of the beads, still the reduction rate achieved resulted in a very rapid decrease in AFXaA levels. Surgery was ordered and possible within 5 hours after Cytosorb initiation. Conclusion: The CytoSorb® Hemoadsorption device enabled rapid correction of Apixaban associated anticoagulation.

Keywords: Apixaban, CytoSorb, emergency surgery, Hemoadsorption

Procedia PDF Downloads 156
2584 Development of Peptide Inhibitors against Dengue Virus Infection by in Silico Design

Authors: Aussara Panya, Nunghathai Sawasdee, Mutita Junking, Chatchawan Srisawat, Kiattawee Choowongkomon, Pa-Thai Yenchitsomanus

Abstract:

Dengue virus (DENV) infection is a global public health problem with approximately 100 million infected cases a year. Presently, there is no approved vaccine or effective drug available; therefore, the development of anti-DENV drug is urgently needed. The clinical reports revealing the positive association between the disease severity and viral titer has been reported previously suggesting that the anti-DENV drug therapy can possibly ameliorate the disease severity. Although several anti-DENV agents showed inhibitory activities against DENV infection, to date none of them accomplishes clinical use in the patients. The surface envelope (E) protein of DENV is critical for the viral entry step, which includes attachment and membrane fusion; thus, the blocking of envelope protein is an attractive strategy for anti-DENV drug development. To search the safe anti-DENV agent, this study aimed to search for novel peptide inhibitors to counter DENV infection through the targeting of E protein using a structure-based in silico design. Two selected strategies has been used including to identify the peptide inhibitor which interfere the membrane fusion process whereby the hydrophobic pocket on the E protein was the target, the destabilization of virion structure organization through the disruption of the interaction between the envelope and membrane proteins, respectively. The molecular docking technique has been used in the first strategy to search for the peptide inhibitors that specifically bind to the hydrophobic pocket. The second strategy, the peptide inhibitor has been designed to mimic the ectodomain portion of membrane protein to disrupt the protein-protein interaction. The designed peptides were tested for the effects on cell viability to measure the toxic to peptide to the cells and their inhibitory assay to inhibit the DENV infection in Vero cells. Furthermore, their antiviral effects on viral replication, intracellular protein level and viral production have been observed by using the qPCR, cell-based flavivirus immunodetection and immunofluorescence assay. None of tested peptides showed the significant effect on cell viability. The small peptide inhibitors achieved from molecular docking, Glu-Phe (EF), effectively inhibited DENV infection in cell culture system. Its most potential effect was observed for DENV2 with a half maximal inhibition concentration (IC50) of 96 μM, but it partially inhibited other serotypes. Treatment of EF at 200 µM on infected cells also significantly reduced the viral genome and protein to 83.47% and 84.15%, respectively, corresponding to the reduction of infected cell numbers. An additional approach was carried out by using peptide mimicking membrane (M) protein, namely MLH40. Treatment of MLH40 caused the reduction of foci formation in four individual DENV serotype (DENV1-4) with IC50 of 24-31 μM. Further characterization suggested that the MLH40 specifically blocked viral attachment to host membrane, and treatment with 100 μM could diminish 80% of viral attachment. In summary, targeting the hydrophobic pocket and M-binding site on the E protein by using the peptide inhibitors could inhibit DENV infection. The results provide proof of-concept for the development of antiviral therapeutic peptide inhibitors to counter DENV infection through the use of a structure-based design targeting conserved viral protein.

Keywords: dengue virus, dengue virus infection, drug design, peptide inhibitor

Procedia PDF Downloads 357
2583 Membrane Permeability of Middle Molecules: A Computational Chemistry Approach

Authors: Sundaram Arulmozhiraja, Kanade Shimizu, Yuta Yamamoto, Satoshi Ichikawa, Maenaka Katsumi, Hiroaki Tokiwa

Abstract:

Drug discovery is shifting from small molecule based drugs targeting local active site to middle molecules (MM) targeting large, flat, and groove-shaped binding sites, for example, protein-protein interface because at least half of all targets assumed to be involved in human disease have been classified as “difficult to drug” with traditional small molecules. Hence, MMs such as peptides, natural products, glycans, nucleic acids with various high potent bioactivities become important targets for drug discovery programs in the recent years as they could be used for ‘undruggable” intracellular targets. Cell membrane permeability is one of the key properties of pharmacodynamically active MM drug compounds and so evaluating this property for the potential MMs is crucial. Computational prediction for cell membrane permeability of molecules is very challenging; however, recent advancement in the molecular dynamics simulations help to solve this issue partially. It is expected that MMs with high membrane permeability will enable drug discovery research to expand its borders towards intracellular targets. Further to understand the chemistry behind the permeability of MMs, it is necessary to investigate their conformational changes during the permeation through membrane and for that their interactions with the membrane field should be studied reliably because these interactions involve various non-bonding interactions such as hydrogen bonding, -stacking, charge-transfer, polarization dispersion, and non-classical weak hydrogen bonding. Therefore, parameters-based classical mechanics calculations are hardly sufficient to investigate these interactions rather, quantum mechanical (QM) calculations are essential. Fragment molecular orbital (FMO) method could be used for such purpose as it performs ab initio QM calculations by dividing the system into fragments. The present work is aimed to study the cell permeability of middle molecules using molecular dynamics simulations and FMO-QM calculations. For this purpose, a natural compound syringolin and its analogues were considered in this study. Molecular simulations were performed using NAMD and Gromacs programs with CHARMM force field. FMO calculations were performed using the PAICS program at the correlated Resolution-of-Identity second-order Moller Plesset (RI-MP2) level with the cc-pVDZ basis set. The simulations clearly show that while syringolin could not permeate the membrane, its selected analogues go through the medium in nano second scale. These correlates well with the existing experimental evidences that these syringolin analogues are membrane-permeable compounds. Further analyses indicate that intramolecular -stacking interactions in the syringolin analogues influenced their permeability positively. These intramolecular interactions reduce the polarity of these analogues so that they could permeate the lipophilic cell membrane. Conclusively, the cell membrane permeability of various middle molecules with potent bioactivities is efficiently studied using molecular dynamics simulations. Insight of this behavior is thoroughly investigated using FMO-QM calculations. Results obtained in the present study indicate that non-bonding intramolecular interactions such as hydrogen-bonding and -stacking along with the conformational flexibility of MMs are essential for amicable membrane permeation. These results are interesting and are nice example for this theoretical calculation approach that could be used to study the permeability of other middle molecules. This work was supported by Japan Agency for Medical Research and Development (AMED) under Grant Number 18ae0101047.

Keywords: fragment molecular orbital theory, membrane permeability, middle molecules, molecular dynamics simulation

Procedia PDF Downloads 188
2582 Effect of Ti, Nb, and Zr Additives on Biocompatibility of Injection Molded 316L Stainless Steel for Biomedical Applications

Authors: Busra Gundede, Ozal Mutlu, Nagihan Gulsoy

Abstract:

Background: Over the years, material research has led to the development of numerous metals and alloys for using in biomedical applications. One of the major tasks of biomaterial research is the functionalization of the material surface to improve the biocompatibility according to a specific application. 316L and 316L alloys are excellent for various bio-applications. This research was investigated the effect of titanium (Ti), niobium (Nb), and zirconium (Zr) additives on injection molded austenitic grade 316L stainless steels in vitro biocompatibility. For this purpose, cytotoxic tests were performed to evaluate the potential biocompatibility of the specimens. Materials and Methods: 3T3 fibroblast were cultivated in DMEM supplemented with 10% fetal bovine serum and %1 penicillin-streptomycin at 37°C with 5% CO2 and 95%humidity. Trypsin/EDTA solution was used to remove cells from the culture flask. Cells were reseeded at a density of 1×105cell in 25T flasks. The medium change took place every 3 days. The trypan blue assay was used to determine cell viability. Cell viability is calculated as the number of viable cells divided by the total number of cells within the grids on the cell counter machine counted the number of blue staining cells and the number of total cells. Cell viability should be at least 95% for healthy log-phase cultures. MTT assay was assessed for 96-hours. Cells were cultivated in 6-well flask within 5 ml DMEM and incubated as same conditions. 0,5mg/ml MTT was added for 4-hours and then acid-isoprohanol was added for solubilize to formazan crystals. Cell morphology after 96h was investigated by SEM. The medium was removed, samples were washed with 0.15 M PBS buffer and fixed for 12h at 4- 8°C with %2,5 gluteraldehyte. Samples were treated with 1% osmium tetroxide. Samples were then dehydrated and dried, mounted on appropriate stubs with colloidal silver and sputter-coated with gold. Images were collected using a scanning electron microscope. ROS assay is a cell viability test for in vitro studies. Cells were grown for 96h, ROS solution added on cells in 6 well plate flask and incubated for 1h. Fluorescence signal indicates ROS generation by cells. Results: Trypan Blue exclusion assay results were 96%, 92%, 95%, 90%, 91% for negative control group, 316L, 316L-Ti, 316L-Nb and 316L-Zr, respectively. Results were found nearly similar to each other when compared with control group. Cell viability from MTT analysis was found to be 100%, 108%, 103%, 107%, and 105% for the control group, 316L, 316L-Ti, 316L-Nb and 316L-Zr, respectively. Fluorescence microscopy analysis indicated that all test groups were same as the control group in ROS assay. SEM images demonstrated that the attachment of 3T3 cells on biomaterials. Conclusion: We, therefore, concluded that Ti, Nb and Zr additives improved physical properties of 316L stainless. In our in vitro experiments showed that these new additives did not modify the cytocompatibility of stainless steel and these additives on 316L might be useful for biomedical applications.

Keywords: 316L stainles steel, biocompatibility, cell culture, Ti, Nb, Zr

Procedia PDF Downloads 513
2581 Antibiotic Susceptibility Profile and Horizontal Gene Transfer in Pseudomonas sp. Isolated from Clinical Specimens

Authors: Sadaf Ilyas, Saba Riaz

Abstract:

The extensive use of antibiotics has led to increases emergence of antibiotic-resistant organisms. Pseudomonas is a notorious opportunistic pathogen involoved in nosocomial infections and exhibit innate resistance to many antibiotics. The present study was conducted to assess the prevalence, levels of antimicrobial susceptibility and resistance mechanisms of Pseudomonas. A total of thirty clinical strains of Pseudomonas were isolated from different clinical sites of infection. All clinical specimens were collected from Chughtais Lahore Lab. Jail road, during 8-07-2010 to 11-01-2011. Biochemical characterization was done using routine biochemical tests. Antimicrobial susceptibility was determined by Kirby-Baeur method. The plasmids were isolated from all the strains and digested with restriction enzyme PstI and EcoRI. Transfer of Multi-resistance plasmid was checked via transformation and conjugation to confirm the plasmid mediated resistance to antibiotics. The prevalence of Pseudomonas in clinical specimens was found out to be 14% of all bacterial infections. IPM has shown to be the most effective drug against Pseudomonas followed by CES, PTB and meropenem, wheareas most of the Pseudomonas strains have developed significant resistance against Penicillins and some Cephalasporins. Antibiotic resistance determinants were carried by plasmids, as they conferred resistance to transformed K1 strains. The isolates readily undergo conjugation, transferring the resistant genes to other strains, illustrating the high rates of cross infection and nosocomial infection in the immunocompromised patients.

Keywords: pseudomonas, antibiotics, drug resistance, horizontal gene transfer

Procedia PDF Downloads 345
2580 Evaluation of Antioxidant Activity and Total Phenolic Content of Lens Esculenta Moench, Seeds

Authors: Vivek Kumar Gupta, Kripi Vohra, Monika Gupta

Abstract:

Pulses have been a vital ingredient of the balanced human diet in India. Lentil (Lens culinaris Medikus or Lens esculenta Moench.) is a common legume known since biblical times. Lentil seeds, with or without hulls, are cooked as dhal and this has been the main dish for millennia in the South Asian region. Oxidative stress can damage lipids, proteins, enzymes, carbohydrates and DNA in cells and tissues, resulting in membrane damage, fragmentation or random cross linking of molecules like DNA, enzymes and structural proteins and even lead to cell death induced by DNA fragmentation and lipid peroxidation. These consequences of oxidative stress construct the molecular basis in the development of cancer, neurodegenerative disorders, cardiovascular diseases, diabetes and autoimmune. The aim of the present work is to assess the antioxidant potential of the peteroleum ether, acetone, methanol and water extract of the Lens esculenta seeds. In vitro antioxidant assessment of the extracts was carried out using 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity, hydroxyl radical scavenging activity, reducing power assay. The quantitative estimation of total phenolic content, total flavonoid content in extracts and in plant material, total saponin content, total alkaloid content, crude fibre content, total volatile content, fat content and mucilage content in drug material was also carried out. Though all the extracts exhibited dose dependent reducing power activity the acetone extract was found to possess significant hydrogen donating ability in DPPH (45.83%-93.13%) and hydroxyl radical scavenging system (28.7%-46.41%) than the peteroleum ether, methanol and water extracts. Total phenolic content in the acetone and methanol extract was found to be 608 and 188 mg gallic acid equivalent of phenol/g of sample respectively. Total flavonoid content of acetone and methanol extract was found to be 128 and 30.6 mg quercetin equivalent/g of sample respectively. It is evident that acetone extract of Lentil seeds possess high levels of polyphenolics and flavonoids that could be utilized as antioxidants and neutraceuticals.

Keywords: antioxidant, flavanoids, Lens esculenta, polyphenols

Procedia PDF Downloads 484
2579 Environmental Fate and Toxicity of Aged Titanium Dioxide Nano-Composites Used in Sunscreen

Authors: Danielle Slomberg, Jerome Labille, Riccardo Catalano, Jean-Claude Hubaud, Alexandra Lopes, Alice Tagliati, Teresa Fernandes

Abstract:

In the assessment and management of cosmetics and personal care products, sunscreens are of emerging concern regarding both human and environmental health. Organic UV blockers in many sunscreens have been evidenced to undergo rapid photodegradation, induce dermal allergic reactions due to skin penetration, and to cause adverse effects on marine systems. While mineral UV-blockers may offer a safer alternative, their fate and impact and resulting regulation are still under consideration, largely related to the potential influence of nanotechnology-based products on both consumers and the environment. Nanometric titanium dioxide (TiO₂) UV-blockers have many advantages in terms of sun protection and asthetics (i.e., transparency). These UV-blockers typically consist of rutile nanoparticles coated with a primary mineral layer (silica or alumina) aimed at blocking the nanomaterial photoactivity and can include a secondary organic coating (e.g., stearic acid, methicone) aimed at favouring dispersion of the nanomaterial in the sunscreen formulation. The nanomaterials contained in the sunscreen can leave the skin either through a bathing of everyday usage, with subsequent release into rivers, lakes, seashores, and/or sewage treatment plants. The nanomaterial behaviour, fate and impact in these different systems is largely determined by its surface properties, (e.g. the nanomaterial coating type) and lifetime. The present work aims to develop the eco-design of sunscreens through the minimisation of risks associated with nanomaterials incorporated into the formulation. All stages of the sunscreen’s life cycle must be considered in this aspect, from its manufacture to its end-of-life, through its use by the consumer to its impact on the exposed environment. Reducing the potential release and/or toxicity of the nanomaterial from the sunscreen is a decisive criterion for its eco-design. TiO₂ UV-blockers of varied size and surface coating (e.g., stearic acid and silica) have been selected for this study. Hydrophobic TiO₂ UV-blockers (i.e., stearic acid-coated) were incorporated into a typical water-in-oil (w/o) formulation while hydrophilic, silica-coated TiO₂ UV-blockers were dispersed into an oil-in-water (o/w) formulation. The resulting sunscreens were characterised in terms of nanomaterial localisation, sun protection factor, and photo-passivation. The risk to the direct aquatic environment was assessed by evaluating the release of nanomaterials from the sunscreen through a simulated laboratory aging procedure. The size distribution, surface charge, and degradation state of the nano-composite by-products, as well as their nanomaterial concentration and colloidal behaviour were determined in a variety of aqueous environments (e.g., seawater and freshwater). Release of the hydrophobic nanocomposites into the aqueous environment was driven by oil droplet formation while hydrophilic nano-composites were readily dispersed. Ecotoxicity of the sunscreen by-products (from both w/o and o/w formulations) and their risk to marine organisms were assessed using coral symbiotes and tropical corals, evaluating both lethal and sublethal toxicities. The data dissemination and provided risk knowledge from the present work will help guide regulation related to nanomaterials in sunscreen, provide better information for consumers, and allow for easier decision-making for manufacturers.

Keywords: alteration, environmental fate, sunscreens, titanium dioxide nanoparticles

Procedia PDF Downloads 262
2578 Synthesis and Characterization of pH-Responsive Nanocarriers Based on POEOMA-b-PDPA Block Copolymers for RNA Delivery

Authors: Bruno Baptista, Andreia S. R. Oliveira, Patricia V. Mendonca, Jorge F. J. Coelho, Fani Sousa

Abstract:

Drug delivery systems are designed to allow adequate protection and controlled delivery of drugs to specific locations. These systems aim to reduce side effects and control the biodistribution profile of drugs, thus improving therapeutic efficacy. This study involved the synthesis of polymeric nanoparticles, based on amphiphilic diblock copolymers, comprising a biocompatible, poly (oligo (ethylene oxide) methyl ether methacrylate (POEOMA) as hydrophilic segment and a pH-sensitive block, the poly (2-diisopropylamino)ethyl methacrylate) (PDPA). The objective of this work was the development of polymeric pH-responsive nanoparticles to encapsulate and carry small RNAs as a model to further develop non-coding RNAs delivery systems with therapeutic value. The responsiveness of PDPA to pH allows the electrostatic interaction of these copolymers with nucleic acids at acidic pH, as a result of the protonation of the tertiary amine groups of this polymer at pH values below its pKa (around 6.2). Initially, the molecular weight parameters and chemical structure of the block copolymers were determined by size exclusion chromatography (SEC) and nuclear magnetic resonance (1H-NMR) spectroscopy, respectively. Then, the complexation with small RNAs was verified, generating polyplexes with sizes ranging from 300 to 600 nm and with encapsulation efficiencies around 80%, depending on the molecular weight of the polymers, their composition, and concentration used. The effect of pH on the morphology of nanoparticles was evaluated by scanning electron microscopy (SEM) being verified that at higher pH values, particles tend to lose their spherical shape. Since this work aims to develop systems for the delivery of non-coding RNAs, studies on RNA protection (contact with RNase, FBS, and Trypsin) and cell viability were also carried out. It was found that they induce some protection against constituents of the cellular environment and have no cellular toxicity. In summary, this research work contributes to the development of pH-sensitive polymers, capable of protecting and encapsulating RNA, in a relatively simple and efficient manner, to further be applied on drug delivery to specific sites where pH may have a critical role, as it can occur in several cancer environments.

Keywords: drug delivery systems, pH-responsive polymers, POEOMA-b-PDPA, small RNAs

Procedia PDF Downloads 259
2577 Using Lysosomal Immunogenic Cell Death to Target Breast Cancer via Xanthine Oxidase/Micro-Antibody Fusion Protein

Authors: Iulianna Taritsa, Kuldeep Neote, Eric Fossel

Abstract:

Lysosome-induced immunogenic cell death (LIICD) is a powerful mechanism of targeting cancer cells that kills circulating malignant cells and primes the host’s immune cells against future remission. Current immunotherapies for cancer are limited in preventing recurrence – a gap that can be bridged by training the immune system to recognize cancer neoantigens. Lysosomal leakage can be induced therapeutically to traffic antigens from dying cells to dendritic cells, which can later present those tumorigenic antigens to T cells. Previous research has shown that oxidative agents administered in the tumor microenvironment can initiate LIICD. We generated a fusion protein between an oxidative agent known as xanthine oxidase (XO) and a mini-antibody specific for EGFR/HER2-sensitive breast tumor cells. The anti-EGFR single domain antibody fragment is uniquely sourced from llama, which is functional without the presence of a light chain. These llama micro-antibodies have been shown to be better able to penetrate tissues and have improved physicochemical stability as compared to traditional monoclonal antibodies. We demonstrate that the fusion protein created is stable and can induce early markers of immunogenic cell death in an in vitro human breast cancer cell line (SkBr3). Specifically, we measured overall cell death, as well as surface-expressed calreticulin, extracellular ATP release, and HMGB1 production. These markers are consensus indicators of ICD. Flow cytometry, luminescence assays, and ELISA were used respectively to quantify biomarker levels between treated versus untreated cells. We also included a positive control group of SkBr3 cells dosed with doxorubicin (a known inducer of LIICD) and a negative control dosed with cisplatin (a known inducer of cell death, but not of the immunogenic variety). We looked at each marker at various time points after cancer cells were treated with the XO/antibody fusion protein, doxorubicin, and cisplatin. Upregulated biomarkers after treatment with the fusion protein indicate an immunogenic response. We thus show the potential for this fusion protein to induce an anticancer effect paired with an adaptive immune response against EGFR/HER2+ cells. Our research in human cell lines here provides evidence for the success of the same therapeutic method for patients and serves as the gateway to developing a new treatment approach against breast cancer.

Keywords: apoptosis, breast cancer, immunogenic cell death, lysosome

Procedia PDF Downloads 199
2576 Silica Sulfuric Acid as an Efficient Catalyst One-Pot Three-Component Aza-Friedel-Crafts Reactions of 2-(thiophen-2-yl)-1H-Indole, Aldehydes, and N-Substituted Anilines

Authors: Nagwa Mourad Abdelazeem, Marwa El-hussieny

Abstract:

Multicomponent reactions (MCRs), one-pot reactions form products from more than two different starting compounds. (MCRs) are ideal reaction systems leading to high structural diversity and molecular complexity through a single transformation. (MCRs) have a lot of advantage such as higher yield, less waste generation, use of readily available starting materials and high atom. (MCRs) provide a rapid process for efficient synthesis of key structures in discovery of drug on the other hand silica sulfuric acid (SSA) has been used as an efficient heterogeneous catalyst for many organic transformations. (SSA) is low cost, ease of preparation, catalyst recycling, and ease of handling, so in this article we used 2-(thiophen-2-yl)-1H-indole, N-substituted anilines and aldehyde in the presence of silica sulfuric acid (SSA) as a catalyst in water as solvent at room temperature to prepare 3,3'-(phenylmethylene)bis(2-(thiophen-2-yl)-1H-indole) and N-methyl-4-(phenyl(2-(thiophen-2-yl)-1H-indol-3-yl)methyl)aniline derivatives Via one-pot reaction. Compound 2-(thiophen-2-yl)-1H-indole belongs to the ubiquitous class of indoles which enjoy broad synthetic, biological and industrial applications ]. Cancer is considered the first or second most common reason of death all through the world. So the synthesized compounds will be tested as anticancer. We expected the synthesized compounds will give good results comparison to the reference drug.

Keywords: aldehydes, aza-friedel-crafts reaction, indole, multicomponent reaction

Procedia PDF Downloads 96
2575 Genotoxic Effect of Tricyclic Antidepressant Drug “Clomipramine Hydrochloride’ on Somatic and Germ Cells of Male Mice

Authors: Samia A. El-Fiky, Fouad A. Abou-Zaid, Ibrahim M. Farag, Naira M. El-Fiky

Abstract:

Clomipramine hydrochloride is one of the most used tricyclic antidepressant drug in Egypt. This drug contains in its chemical structure on two benzene rings. Benzene is considered to be toxic and clastogenic agent. So, the present study was designed to assess the genotoxic effect of Clomipramine hydrochloride on somatic and germ cells in mice. Three dose levels 0.195 (Low), 0.26 (Medium), and 0.65 (High) mg/kg.b.wt. were used. Seven groups of male mice were utilized in this work. The first group was employed as a control. In the remaining six groups, each of the above doses was orally administrated for two groups, one of them was treated for 5 days and the other group was given the same dose for 30 days. At the end of experiments, the animals were sacrificed for cytogenetic and sperm examination as well as histopathological investigations by using hematoxylin and eosin stains (H and E stains) and electron microscope. Concerning the sperm studies, these studies were confined to 5 days treatment with different dose levels. Moreover, the ultrastructural investigation by electron microscope was restricted to 30 days treatment with drug doses. The results of the dose dependent effect of Clomipramine showed that the treatment with three different doses induced increases of frequencies of chromosome aberrations in bone marrow and spermatocyte cells as compared to control. In addition, mitotic and meiotic activities of somatic and germ cells were declined. The treatments with medium or high doses were more effective for inducing significant increases of chromosome aberrations and significant decreases of cell divisions than treatment with low dose. The effect of high dose was more pronounced for causing such genetic deleterious in respect to effect of medium dose. Moreover, the results of the time dependent effect of Clomipramine observed that the treatment with different dose levels for 30 days led to significant increases of genetic aberrations than treatment for 5 days. Sperm examinations revealed that the treatment with Clomipramine at different dose levels caused significant increase of sperm shape abnormalities and significant decrease in sperm count as compared to control. The adverse effects on sperm shape and count were more obviousness by using the treatments with medium or high doses than those found in treatment with low dose. The group of mice treated with high dose had the highest rate of sperm shape abnormalities and the lowest proportion of sperm count as compared to mice received medium dose. In histopathological investigation, hematoxylin and eosin stains showed that, the using of low dose of Clomipramine for 5 or 30 days caused a little pathological changes in liver tissue. However, using medium and high doses for 5 or 30 days induced severe damages than that observed in mice treated with low dose. The treatment with high dose for 30 days gave the worst results of pathological changes in hepatic cells. Moreover, ultrastructure examination revealed, the mice treated with low dose of Clomipramine had little differences in liver histological architecture as compared to control group. These differences were confined to cytoplasmic inclusions. Whereas, prominent pathological changes in nuclei as well as dilated of rough Endoplasmic Reticulum (rER) were observed in mice treated with medium or high doses of Clomipramine drug. In conclusion, the present study adds evidence that treatments with medium or high doses of Clomipramine have genotoxic effects on somatic and germ cells of mice, as unwanted side effects. However, the using of low dose (especially for short time, 5 days) can be utilized as a therapeutic dose, where it caused relatively similar proportions of genetic, sperm, and histopathological changes as those found in normal control.

Keywords: chromosome aberrations, clomipramine, mice, histopathology, sperm abnormalities

Procedia PDF Downloads 521