Search results for: titanium dioxide
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1042

Search results for: titanium dioxide

412 Design and Simulation of Step Structure RF MEMS Switch for K Band Applications

Authors: G. K. S. Prakash, Rao K. Srinivasa

Abstract:

MEMS plays an important role in wide range of applications like biological, automobiles, military and communication engineering. This paper mainly investigates on capacitive shunt RF MEMS switch with low actuation voltage and low insertion losses. To trim the pull-in voltage, a step structure has introduced to trim air gap between the beam and the dielectric layer with that pull in voltage is trim to 2.9 V. The switching time of the proposed switch is 39.1μs, and capacitance ratio is 67. To get more isolation, we have used aluminum nitride as dielectric material instead of silicon nitride (Si₃N₄) and silicon dioxide (SiO₂) because aluminum nitride has high dielectric constant (εᵣ = 9.5) increases the OFF capacitance and eventually increases the isolation of the switch. The results show that the switch is ON state involves return loss (S₁₁) less than -25 dB up to 40 GHz and insertion loss (S₂₁) is more than -1 dB up to 35 GHz. In OFF state switch shows maximum isolation (S₂₁) of -38 dB occurs at a frequency of 25-27 GHz for K band applications.

Keywords: RF MEMS, actuation voltage, isolation loss, switches

Procedia PDF Downloads 351
411 Optimization of Supercritical CO2 Power Cycle for Waste Heat Recovery from Gas Turbine with Respect to Cooling Condition

Authors: Young Min Kim, Jeong Lak Sohn, Eui Soo Yoon

Abstract:

This study describes the optimization of supercritical carbon dioxide (S-CO2) power cycle for recovering waste heat from a gas turbine. An S-CO2 cycle that recovers heat from small industrial and aeroderivative gas turbines can outperform a steam-bottoming cycle despite its simplicity and compactness. In using S-CO2 power cycles for waste heat recovery, a split cycle was studied to maximize the net output power by incorporating the utilization efficiency of the waste heat (lowering the temperature of the exhaust gas through the heater) along with the thermal efficiency of the cycle (minimizing the temperature difference for the heat transfer, exergy loss). The cooling condition of the S-CO2 WHR system has a great impact on the performance and the optimum low pressure of the system. Furthermore, the optimum high pressure of the S-CO2 WHR systems for the maximum power from the given heat sources is dependent on the temperature of the waste heat source.

Keywords: exergy loss, gas turbine, optimization, supercritical CO2 power cycle, split cycle, waste heat recovery

Procedia PDF Downloads 336
410 TiO2 Nanowires as Efficient Heterogeneous Photocatalysts for Waste-Water Treatment

Authors: Gul Afreen, Sreedevi Upadhyayula, Mahendra K. Sunkara

Abstract:

One-dimensional (1D) nanostructures like nanowires, nanotubes, and nanorods find variety of practical application owing to their unique physico-chemical properties. In this work, TiO2 nanowires were synthesized by direct oxidation of titanium particles in a unique microwave plasma jet reactor. The prepared TiO2 nanowires manifested the flexible features, and were characterized by using X-ray diffraction, Brunauer-Emmett-Teller (BET) surface area analyzer, UV-Visible and FTIR spectrophotometers, Scanning electron microscope, and Transmission electron microscope. Further, the photodegradation efficiency of these nanowires were tested against toxic organic dye like methylene blue (MB) and the results were compared with the commercial TiO2. It was found that TiO2 nanowires exhibited superior photocatalytic performance (89%) as compared to commercial TiO2 (75%) after 60 min of reaction. This is attributed to the lower recombination rate and increased interfacial charge transfer in TiO2 nanowire. Pseudo-first order kinetic modelling performed with the experimental results revealed that the rate constant of photodegradation in case of TiO2 nanowire was 1.3 times higher than that of commercial TiO2. Superoxide radical (O2˙) was found to be the major contributor in the photodegradation mechanism. Based on the trapping experiments, a plausible mechanism of the photocatalytic reaction is discussed.

Keywords: heterogeneous catalysis, photodegradation, reactive oxygen species, TiO₂ nanowires

Procedia PDF Downloads 133
409 Numerical Investigation of Oxy-Fuel Combustion in Gasoline Engine for Carbon Capture and Storage

Authors: Zhijun Peng, Xiang Li, Dayou Li, Raouf Mobasheri, Abdel Aitouche

Abstract:

To implement carbon capture and storage (CCS) for eliminating carbon dioxide (CO₂) emissions, this paper describes a study on oxy-fuel combustion (OFC) with an ethanol-gasoline dual-fuel spark ignition (DFSI) engine under economical oxygen consumption at low and mid-high loads which was performed by 1D simulation. It is demonstrated that under OFC mode without other optimisation, brake mean effective pressure (BMEP) can meet the requirement at mid-high load, but it has a considerable decline at low load compared to conventional air combustion (CAC) mode. Moreover, there is a considerable deterioration in brake specific fuel consumption (BSFC) compared to that of CAC mode. A practical method is proposed to optimise the DFSI engine performance under OFC mode by changing intake charge components and utilising appropriate water injection (WI) strategies.

Keywords: oxy-fuel combustion, dual-fuel spark ignition engine, ethanol, gasoline, computer simulation

Procedia PDF Downloads 80
408 Assessing the Severity of Traffic Related Air Pollution in South-East London to School Pupils

Authors: Ho Yin Wickson Cheung, Liora Malki-Epshtein

Abstract:

Outdoor air pollution presents a significant challenge for public health globally, especially in urban areas, with road traffic acting as the primary contributor to air pollution. Several studies have documented the antagonistic relation between traffic-related air pollution (TRAP) and the impact on health, especially to the vulnerable group of population, particularly young pupils. Generally, TRAP could cause damage to their brain, restricting the ability of children to learn and, more importantly, causing detrimental respiratory issues in later life. Butlittle is known about the specific exposure of children at school during the school day and the impact this may have on their overall exposure to pollution at a crucial time in their development. This project has set out to examine the air quality across primary schools in South-East London and assesses the variability of data found based on their geographic location and surroundings. Nitrogen dioxide, PM contaminants, and carbon dioxide were collected with diffusion tubes and portable monitoring equipment for eight schools across three local areas, that are Greenwich, Lewisham, and Tower Hamlets. This study first examines the geographical features of the schools surrounding (E.g., coverage of urban road structure and green infrastructure), then utilize three different methods to capture pollutants data. Moreover, comparing the obtained results with existing data from monitoring stations to understand the differences in air quality before and during the pandemic. Furthermore, most studies in this field have unfortunately neglected human exposure to pollutants and calculated based on values from fixed monitoring stations. Therefore, this paper introduces an alternative approach by calculating human exposure to air pollution from real-time data obtained when commuting within related areas (Driving routes and field walking). It is found that schools located highly close to motorways are generally not suffering from the most air pollution contaminants. Instead, one with the worst traffic congested routes nearby might also result in poor air quality. Monitored results also indicate that the annual air pollution values have slightly decreased during the pandemic. However, the majority of the data is currently still exceeding the WHO guidelines. Finally, the total human exposures for NO2 during commuting in the two selected routes were calculated. Results illustrated the total exposure for route 1 were 21,730 μm/m3 and 28,378.32 μm/m3, and for route 2 were 30,672 μm/m3 and 16,473 μm/m3. The variance that occurred might be due to the difference in traffic volume that requires further research. Exposure for NO2 during commuting was plotted with detailed timesteps that have shown their peak usually occurred while commuting. These have consolidated the initial assumption to the extremeness of TRAP. To conclude, this paper has yielded significant benefits to understanding air quality across schools in London with the new approach of capturing human exposure (Driving routes). Confirming the severity of air pollution and promoting the necessity of considering environmental sustainability for policymakers during decision making to protect society's future pillars.

Keywords: air pollution, schools, pupils, congestion

Procedia PDF Downloads 106
407 Integrative System of GDP, Emissions, Health Services and Population Health in Vietnam: Dynamic Panel Data Estimation

Authors: Ha Hai Duong, Amnon Levy Livermore, Kankesu Jayanthakumaran, Oleg Yerokhin

Abstract:

The issues of economic development, the environment and human health have been investigated since 1990s. Previous researchers have found different empirical evidences of the relationship between income and environmental pollution, health as determinant of economic growth, and the effects of income and environmental pollution on health in various regions of the world. This paper concentrates on integrative relationship analysis of GDP, carbon dioxide emissions, and health services and population health in context of Vietnam. We applied the dynamic generalized method of moments (GMM) estimation on datasets of Vietnam’s sixty-three provinces for the years 2000-2010. Our results show the significant positive effect of GDP on emissions and the dependence of population health on emissions and health services. We find the significant relationship between population health and GDP. Additionally, health services are significantly affected by population health and GDP. Finally, the population size too is other important determinant of both emissions and GDP.

Keywords: economic development, emissions, environmental pollution, health

Procedia PDF Downloads 608
406 Strategy for Energy Industry and Oil Complex of Russia

Authors: Young Sik Kim, Tae Kwon Ha

Abstract:

Russia was one of the world’s leading mineral- producing countries. In 2012, Russia was ranked among the world’s leading producers or was a leading regional producer of such mineral commodities as aluminum, arsenic, asbestos, bauxite, boron, cadmium, cement, coal, cobalt, copper, diamond, fluorspar, gold, iron ore, lime, magnesium compounds and metals, mica (flake, scrap, and sheet), natural gas, nickel, nitrogen, oil shale, palladium, peat, petroleum, phosphate, pig iron, platinum, potash, rhenium, silicon, steel, sulfur, titanium sponge, tungsten, and vanadium. Russia has large reserves of a variety of mineral resources and undoubtedly will continue to be one of the world’s leading mineral producers. Although the country’s economy is expected to grow in 2012, some problems are likely to remain. In 2011, the Russian economy returned to economic growth after the significant decline in 2010. According to some analysts, however, the recovery of 2011 did not appear sufficiently vigorous to carry the country’s strong economic growth into the next decade. Even in the sectors of the economy where the country is among the world leaders (ferrous metals, gas, petroleum), Russian industry has obsolete plants and equipment, a slow rate of innovation, and low labor productivity.

Keywords: Russia, energy resources, economic growth, strategy, oil complex

Procedia PDF Downloads 591
405 The Investigation of Precipitation Conditions of Chevreul’s Salt

Authors: Turan Çalban, Fatih Sevim, Oral Laçin

Abstract:

In this study, the precipitation conditions of Chevreul’s salt were evaluated. The structure of Chevreul’s salt was examined by considering the previous studies. Thermodynamically, the most important precipitation parameters were pH, temperature, and sulphite-copper(II) ratio. The amount of Chevreul’s salt increased with increasing the temperature and sulphite-copper(II) ratio at the certain range, while it increased with decreasing the pH value at the chosen range. The best solution medium for recovery of Chevreul’s salt is sulphur dioxide gas-water system. Moreover, the soluble sulphite salts are used as efficient precipitating reagents. Chevreul’s salt is generally used to produce the highly pure copper powders from synthetic copper sulphate solutions and impure leach solutions. When the pH of the initial ammoniacal solution is greater than 8.5, ammonia in the medium is not free, and Chevreul’s salt from solution does not precipitate. In contrast, copper ammonium sulphide is precipitated. The pH of the initial solution containing ammonia for precipitating of Chevreul’s salt must be less than 8.5.

Keywords: Chevreul's salt, production, copper sulfites, copper compound

Procedia PDF Downloads 239
404 Capture of Co₂ From Natural Gas Using Modified Imidazolium Ionic Liquids

Authors: Alaa A. Ghanem, S. E. M. Desouky

Abstract:

Natural gas (NG) is considered one of the most essential global energy sources. NG fields are often far away from the market, and a long-distance transporting pipeline usually is required. Production of NG with high content of CO₂ leads to severe problems such as equipment corrosion along with the production line until refinery.in addition to a high level of toxicity and decreasing in calorific value of the NG. So it is recommended to remove or decrease the CO₂ percent to meet transport specifications. This can be reached using different removal techniques such as physical and chemical absorption, pressure swing adsorption, membrane separation, or low-temperature separation. Many solvents and chemicals are being used to capture carbon dioxide on a large scale; among them, Ionic liquids have great potential due to their tunable properties; low vapour pressure, low melting point, and sensible thermal stability. In this research, three modifiedimidazolium ionic liquids will be synthesized and characterized using different tools of analysis such as FT-IR, 1H NMR. Thermal stability and surface activity will be studied. The synthesized compounds will be evaluated as selective solvents for CO₂ removal from natural gas using PVT cell.

Keywords: natural gas, CO₂ capture, imidazolium ionic liquid, PVT cell

Procedia PDF Downloads 161
403 CO2 Adsorption on the Activated Klaten-Indonesian Natural Zeolite in a Packed Bed Adsorber

Authors: Sang Kompiang Wirawan, Chandra Purnomo

Abstract:

Carbon dioxide (CO2) adsorption on the activated Klaten-Indonesian natural zeolite (AKINZ) in a packed bed adsorber has been studied. Experiment works consisted of acid activation and adsorption experiments. The natural zeolite sample was activated using 0.3 M HCl at the temperature of 353 K. In the adsorption experiments the feed gas concentrations were 40 and 80 % CO2 in helium within various temperatures of 303; 323 and 373 K. The experiments were conducted by using transient step change adsorption and 20 % Ar/He tracer experiment was conducted to measure dispersion and time lag effect of the packed bed system. A mathematical model of CO2 adsorption had been set up by assuming plug flow;isothermal;isobaric and no gas film mass transport resistance. Single site Langmuir physisorption and Maxwell Stefan mass transport in micropore were applied. All the data were then optimized to get the best value of modified fitted parameter. The model was in a good agreement with the experiment data. Diffusivity tended to increase by increasing temperatures.

Keywords: adsorption, Langmuir, Maxwell-Stefan, natural zeolite, surface diffusion

Procedia PDF Downloads 340
402 Climate Change, Global Warming and Future of Our Planet

Authors: Indu Gupta

Abstract:

Climate change and global warming is most burning issue for “our common future”. For this common global interest. Countries organize conferences of government and nongovernment type. Human being destroying the non-renewable resources and polluting the renewable resources of planet for economic growth. Air pollution is mainly responsible for global warming and climate change .Due to global warming ice glaciers are shrinking and melting. Forests are shrinking, deserts expanding and soil eroding. The depletion of stratospheric ozone layer is depleting and hole in ozone layer that protect us from harmful ultra violet radiation. Extreme high temperature in summer and extreme low temperature and smog in winters, floods in rainy season. These all are indication of climate change. The level of carbon dioxide and other heat trapping gases in the atmosphere is increasing at high speed. Nation’s are worried about environmental degradation.

Keywords: environmental degradation, global warming, soil eroding, ultra-Violate radiation

Procedia PDF Downloads 362
401 High Temperature Properties of Diffusion Brazed Joints of in 939 Ni-Base Superalloy

Authors: Hyunki Kang, Hi Won Jeong

Abstract:

The gas turbine operates for a long period of time under harsh, cyclic conditions of high temperature and pressure, where high turbine inlet temperature (TIT) can range from 1273 to 1873K. Therefore, Ni-base superalloys such as IN738, IN939, Rene 45, Rene 71, Rene 80, Mar M 247, CM 247, and CMSX-4 with excellent mechanical properties and resistance to creep, corrosion and oxidation at high temperatures are indeed used. Among the alloying additions for these alloys, aluminum (Al) and titanium (Ti) form gamma prime and enhance the high-temperature properties. However, when crack-damaged high-temperature turbine components such as blade and vane are repaired by fusion welding, they cause cracks. For example, when arc welding is applied to certain superalloys that contain Al and Ti with more than 3 wt.% and T3.5 wt%, respectively, such as IN738, IN939, Rene 80, Mar M 247, and CM 247, aging cracks occur. Therefore, repair technologies using diffusion brazing, which has less heat input into the base material, are being developed. Analysis of microstructural evolution of the brazed joints with a base metal of IN 939 Ni-base superalloy using brazing different filler metals was also carried out using X-ray diffraction, OEM, SEM-EDS, and EPMA. Stress rupture and high-temperature tensile strength properties were also measured to analyze the effects of different brazing heat cycles. The boron amount in the diffusion-affected zone (DAZ) was decreased towards the base metal and the formation of borides at grain boundaries was detected through EPMA.

Keywords: gas turbine, diffusion brazing, superalloy, gas turbine repair

Procedia PDF Downloads 35
400 Regularities of Changes in the Fractal Dimension of Acoustic Emission Signals in the Stages Close to the Destruction of Structural Materials When Exposed to Low-Cycle Loaded

Authors: Phyo Wai Aung, Sysoev Oleg Evgenevich, Boris Necolavet Maryin

Abstract:

The article deals with theoretical problems of correlation of processes of microstructure changes of structural materials under cyclic loading and acoustic emission. The ways of the evolution of a microstructure under the influence of cyclic loading are shown depending on the structure of the initial crystal structure of the material. The spectra of the frequency characteristics of acoustic emission signals are experimentally obtained when testing titanium samples for cyclic loads. Changes in the fractal dimension of the acoustic emission signals in the selected frequency bands during the evolution of the microstructure of structural materials from the action of cyclic loads, as well as in the destruction of samples, are studied. The experimental samples were made of VT-20 structural material widely used in aircraft and rocket engineering. The article shows the striving of structural materials for synergistic stability and reduction of the fractal dimension of acoustic emission signals, in accordance with the degradation of the microstructure, which occurs as a result of fatigue processes from the action of low cycle loads. As a result of the research, the frequency range of acoustic emission signals of 100-270 kHz is determined, in which the fractal dimension of the signals, it is possible to most reliably predict the durability of structural materials.

Keywords: cyclic loadings, material structure changing, acoustic emission, fractal dimension

Procedia PDF Downloads 247
399 Kinetic Rate Comparison of Methane Catalytic Combustion of Palladium Catalysts Impregnated onto ɤ-Alumina and Bio-Char

Authors: Noor S. Nasri, Eric C. A. Tatt, Usman D. Hamza, Jibril Mohammed, Husna M. Zain

Abstract:

Climate change has becoming a global environmental issue that may trigger irreversible changes in the environment with catastrophic consequences for human, animals and plants on our planet. Methane, carbon dioxide and nitrous oxide are the greenhouse gases (GHG) and as the main factor that significantly contributes to the global warming. Mainly carbon dioxide be produced and released to atmosphere by thermal industrial and power generation sectors. Methane is dominant component of natural gas releases significant of thermal heat, and the gaseous pollutants when homogeneous thermal combustion takes place at high temperature. Heterogeneous catalytic Combustion (HCC) principle is promising technologies towards environmental friendly energy production should be developed to ensure higher yields with lower pollutants gaseous emissions and perform complete combustion oxidation at moderate temperature condition as comparing to homogeneous high thermal combustion. Hence the principle has become a very interesting alternative total oxidation for the treatment of pollutants gaseous emission especially NOX product formation. Noble metals are dispersed on a support-porous HCC such as γ- Al2O3, TiO2 and ThO2 to increase thermal stability of catalyst and to increase to effectiveness of catalytic combustion. Support-porous HCC material to be selected based on factors of the surface area, porosity, thermal stability, thermal conductivity, reactivity with reactants or products, chemical stability, catalytic activity, and catalyst life. γ- Al2O3 with high catalytic activity and can last longer life of catalyst, is commonly used as the support for Pd catalyst at low temperatures. Sustainable and renewable support-material of bio-mass char was derived from agro-industrial waste material and used to compare with those the conventional support-porous material. The abundant of biomass wastes generated in palm oil industries is one potential source to convert the wastes into sustainable material as replacement of support material for catalysts. Objective of this study was to compare the kinetic rate of reaction the combustion of methane on Palladium (Pd) based catalyst with Al2O3 support and bio-char (Bc) support derived from shell kernel. The 2wt% Pd was prepared using incipient wetness impregnation method and the HCC performance was accomplished using tubular quartz reactor with gas mixture ratio of 3% methane and 97% air. Material characterization was determined using TGA, SEM, and BET surface area. The methane porous-HCC conversion was carried out by online gas analyzer connected to the reactor that performed porous-HCC. BET surface area for prepared 2 wt% Pd/Bc is smaller than prepared 2wt% Pd/ Al2O3 due to its low porosity between particles. The order of catalyst activity based on kinetic rate on reaction of catalysts in low temperature is prepared 2wt% Pd/Bc > calcined 2wt% Pd/ Al2O3 > prepared 2wt% Pd/ Al2O3 > calcined 2wt% Pd/Bc. Hence the usage of agro-industrial bio-mass waste material can enhance the sustainability principle.

Keywords: catalytic-combustion, environmental, support-bio-char material, sustainable and renewable material

Procedia PDF Downloads 382
398 Crystalline Structure of Starch Based Nano Composites

Authors: Farid Amidi Fazli, Afshin Babazadeh, Farnaz Amidi Fazli

Abstract:

In contrast with literal meaning of nano, researchers have been achieving mega adventures in this area and every day more nanomaterials are being introduced to the market. After long time application of fossil-based plastics, nowadays accumulation of their waste seems to be a big problem to the environment. On the other hand, mankind has more attention to safety and living environment. Replacing common plastic packaging materials with degradable ones that degrade faster and convert to non-dangerous components like water and carbon dioxide have more attractions; these new materials are based on renewable and inexpensive sources of starch and cellulose. However, the functional properties of them do not suitable for packaging. At this point, nanotechnology has an important role. Utilizing of nanomaterials in polymer structure will improve mechanical and physical properties of them; nanocrystalline cellulose (NCC) has this ability. This work has employed a chemical method to produce NCC and starch bio nanocomposite containing NCC. X-Ray Diffraction technique has characterized the obtained materials. Results showed that applied method is a suitable one as well as applicable one to NCC production.

Keywords: biofilm, cellulose, nanocomposite, starch

Procedia PDF Downloads 394
397 Cladding Technology for Metal-Hybrid Composites with Network-Structure

Authors: Ha-Guk Jeong, Jong-Beom Lee

Abstract:

Cladding process is very typical technology for manufacturing composite materials by the hydrostatic extrusion. Because there is no friction between the metal and the container, it can be easily obtained in uniform flow during the deformation. The general manufacturing process for a metal-matrix composite in the solid state, mixing metal powders and ceramic powders with a suited volume ratio, prior to be compressed or extruded at the cold or hot condition in a can. Since through a plurality of unit processing steps of dispersing the materials having a large difference in their characteristics and physical mixing, the process is complicated and leads to non-uniform dispersion of ceramics. It is difficult and hard to reach a uniform ideal property in the coherence problems at the interface between the metal and the ceramic reinforcements. Metal hybrid composites, which presented in this report, are manufactured through the traditional plastic deformation processes like hydrostatic extrusion, caliber-rolling, and drawing. By the previous process, the realization of uniform macro and microstructure is surely possible. In this study, as a constituent material, aluminum, copper, and titanium have been used, according to the component ratio, excellent characteristics of each material were possible to produce a metal hybrid composite that appears to maximize. MgB₂ superconductor wire also fabricated via the same process. It will be introduced to their unique artistic and thermal characteristics.

Keywords: cladding process, metal-hybrid composites, hydrostatic extrusion, electronic/thermal characteristics

Procedia PDF Downloads 167
396 Preparation and Visible Light Photoactivity of N-Doped ZnO/ZnS Photocatalysts

Authors: Nuray Güy, Mahmut Özacar

Abstract:

Semiconductor nanoparticles such as TiO₂ and ZnO as photocatalysts are very efficient catalysts for wastewater treatment by the chemical utilization of light energy, which is capable of converting the toxic and nonbiodegradable organic compounds into carbon dioxide and mineral acids. ZnO semiconductor has a wide bandgap energy of 3.37 eV and a relatively large exciton binding Energy (60 meV), thus can absorb only UV light with the wavelength equal to or less than 385 nm. It exhibits low efficiency under visible light illumination due to its wide band gap energy. In order to improve photocatalytic activity of ZnO under visible light, band gap of ZnO may be narrowed by doping such as N, C, S nonmetal ions and coupled two separate semiconductors possessing different energy levels for their corresponding conduction and valence bands. ZnS has a wider band gap (Eg=3.7 eV) than ZnO and generates electron–hole pairs by photoexcitation rapidly. In the present work, N doped ZnO/ZnS nano photocatalysts with visible-light response were synthesized by microwave-hydrothermal method using thiourea as N source. The prepared photocatalysts were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV–visible (UV–vis). The photocatalytic activities samples and undoped ZnO have been studied for the degradation of dye, and have also been compared with together.

Keywords: photocatalyst, synthesis, visible light, ZnO/ZnS

Procedia PDF Downloads 271
395 Sustainable Biogas Upgrading: Characterization of Adsorption Properties of Tuff

Authors: Emanuele Bonamente, Andrea Aquino, Franco Cotana

Abstract:

This paper presents experimental results from the analysis of Tuff for CO2 and H2S removal from biogas. Synthetic zeolites, commonly used for biogas upgrading, are characterized by excellent performance in terms of carbon dioxide adsorption, however, cost and environmental footprint represent a negative contribute to their sustainability. Natural zeolites contained in Tuff, a totally inexpensive byproduct of the construction industry, show very interesting selective adsorption properties, associated with its availability in regions, as central Italy, where biogas production from small scale plants is rapidly increasing. An in-house experimental device was assembled to measure the adsorption capacity of Tuff as a function of partial CO2 pressure for different temperatures (i.e. adsorption isotherms). Results show performances as high as 66% with respect to commercial zeolites (13X). A sensitivity analysis of different regeneration processes is also presented. A comparative analysis of natural and synthetic zeolites was finally performed using biogas samples obtained from different types of feedstock and characterized by varying CO2 and H2S content.

Keywords: biogas upgrading, CO2 adsorption, sustainable energy, tuff

Procedia PDF Downloads 278
394 Climate Change and Its Effects on Terrestrial Insect Diversity in Mukuruthi National Park, Nilgiri Biosphere Reserve, Tamilnadu, India

Authors: M. Elanchezhian, C. Gunasekaran, A. Agnes Deepa, M. Salahudeen

Abstract:

In recent years climate change is one of the most emerging threats facing by biodiversity both the animals and plants species. Elevated carbon dioxide and ozone concentrations, extreme temperature, changes in rainfall patterns, insects-plant interaction are the main criteria that affect biodiversity. In the present study, which emphasis the climate change and its effects on terrestrial insect diversity in Mukuruthi National Park a protected areas of Western Ghats in India. Sampling was done seasonally at the three areas using pitfall traps, over the period of January to December 2013. The statistical findings were done by Shannon wiener diversity index (H). A significant seasonal variation pattern was detected for total insect’s diversity at the different study areas. Totally nine orders of insects were recorded. Diversity and abundance of terrestrial insects shows much difference between the Natural, Shoal forest and the Grasslands.

Keywords: biodiversity, climate change, mukuruthi national park, terrestrial invertebrates

Procedia PDF Downloads 504
393 The Applications of Zero Water Discharge (ZWD) Systems for Environmental Management

Authors: Walter W. Loo

Abstract:

China declared the “zero discharge rules which leave no toxics into our living environment and deliver blue sky, green land and clean water to many generations to come”. The achievement of ZWD will provide conservation of water, soil and energy and provide drastic increase in Gross Domestic Products (GDP). Our society’s engine needs a major tune up; it is sputtering. ZWD is achieved in world’s space stations – no toxic air emission and the water is totally recycled and solid wastes all come back to earth. This is all done with solar power. These are all achieved under extreme temperature, pressure and zero gravity in space. ZWD can be achieved on earth under much less fluctuations in temperature, pressure and normal gravity environment. ZWD systems are not expensive and will have multiple beneficial returns on investment which are both financially and environmentally acceptable. The paper will include successful case histories since the mid-1970s. ZWD discharge can be applied to the following types of projects: nuclear and coal fire power plants with a closed loop system that will eliminate thermal water discharge; residential communities with wastewater treatment sump and recycle the water use as a secondary water supply; waste water treatment Plants with complete water recycling including water distillation to produce distilled water by very economical 24-hours solar power plant. Landfill remediation is based on neutralization of landfilled gas odor and preventing anaerobic leachate formation. It is an aerobic condition which will render landfill gas emission explosion proof. Desert development is the development of recovering soil moisture from soil and completing a closed loop water cycle by solar energy within and underneath an enclosed greenhouse. Salt-alkali land development can be achieved by solar distillation of salty shallow water into distilled water. The distilled water can be used for soil washing and irrigation and complete a closed loop water cycle with energy and water conservation. Heavy metals remediation can be achieved by precipitation of dissolved toxic metals below the plant or vegetation root zone by solar electricity without pumping and treating. Soil and groundwater remediation - abandoned refineries, chemical and pesticide factories can be remediated by in-situ electrobiochemical and bioventing treatment method without pumping or excavation. Toxic organic chemicals are oxidized into carbon dioxide and heavy metals precipitated below plant and vegetation root zone. New water sources: low temperature distilled water can be recycled for repeated use within a greenhouse environment by solar distillation; nano bubble water can be made from the distilled water with nano bubbles of oxygen, nitrogen and carbon dioxide from air (fertilizer water) and also eliminate the use of pesticides because the nano oxygen will break the insect growth chain in the larvae state. Three dimensional high yield greenhouses can be constructed by complete water recycling using the vadose zone soil as a filter with no farming wastewater discharge.

Keywords: greenhouses, no discharge, remediation of soil and water, wastewater

Procedia PDF Downloads 336
392 Environmental, Climate Change, and Health Outcomes in the World

Authors: Felix Aberu

Abstract:

The high rate of greenhouse gas (CO₂) emission and increased concentration of Carbon Dioxide in the atmosphere are not unconnected to both human and natural activities. This has caused climate change and global warming in the world. The adverse effect of these climatic changes has no doubt threatened human existence. Hence, this study examined the effects of environmental and climate influence on mortality and morbidity rates, with particular reference to the world’s leading CO₂ emission countries, using both the pre-estimation, estimation, and post-estimation techniques for more dependable outcomes. Hence, the System Generalized Method of Moments (SGMM) was adopted as the main estimation technique for the data analysis from 1996 to 2023. The coefficient of carbon emissions confirmed a positive and significant relationship among CO₂ emission, mortality, and morbidity rates in the world’s leading CO₂ emissions countries, which implies that carbon emission has contributed to mortality and morbidity rates in the world. Therefore, significant action should be taken to facilitate the expansion of environmental protection and sustainability initiatives in any CO₂ emissions nations of the world.

Keywords: environmental, mortality, morbidity, health outcomes, carbon emissions

Procedia PDF Downloads 42
391 An Experimental Study on the Mechanical Performance of Concrete Enhanced with Graphene Nanoplatelets

Authors: Johana Jaramillo, Robin Kalfat, Dmitriy A. Dikin

Abstract:

The cement production process is one of the major sources of carbon dioxide (CO₂), a potent greenhouse gas. Indeed, as a result of its cement manufacturing process, concrete contributes approximately 8% of global greenhouse gas emissions. In addition to environmental concerns, concrete also has a low tensile and ductility strength, which can lead to cracks. Graphene nanoplatelets (GNPs) have proven to be an eco-friendly solution for improving the mechanical and durability properties of concrete. The current research investigates the effects of preparing concrete enhanced with GNPs by using different wet dispersions techniques and mixing methods on its mechanical properties. Concrete specimens were prepared with 0.00 wt%, 0.10 wt%, 0.20 wt%, 0.30 wt% and wt% GNPs. Compressive and flexural strength of concrete at age 7 days were determined. The results showed that the maximum improvement in mechanical properties was observed when GNPs content was 0.20 wt%. The compressive and flexural were improved by up to 17.5% and 8.6%, respectively. When GNP dispersions were prepared by the combination of a drill and an ultrasonic probe, mechanical properties experienced maximum improvement.

Keywords: concrete, dispersion techniques, graphene nanoplatelets, mechanical properties, mixing methods

Procedia PDF Downloads 105
390 Inactivation of Rhodotorula spp. 74 with Cold Atmospheric Plasma

Authors: Zoran Herceg, Višnja Stulić, Tomislava Vukušić, Anet Režek Jambrak

Abstract:

High voltage electrical discharge is a new technology used for inactivation of pathogen microorganisms. Pathogen yeasts can cause diseases in humans if they are ingested. Nowadays new technologies have become the focus of researching all over the world. Rhodotorula is known as yeast that can cause diseases in humans. The aim of this study was to examine whether the high voltage electrical discharge treatment generated in gas phase has an influence on yeast reduction and recovery of Rhodotorula spp 74 in pure culture. Rhodotorula spp. 74 was treated in 200 mL of model solution. Treatment time (5 and 10 min), frequency (60 and 90 Hz) and injected gas (air or argon 99,99%) were changed. Titanium high voltage needle was used as high voltage electrode (positive polarity) through which air or argon was injected at the gas flow of 0.6 L/min. Experimental design and statistical analyses were obtained by Statgraphics Centurion software (StatPoint Technologies, Inc., VA, USA). The best inactivation rate 1.7 log10 reduction was observed after the 10 min of treatment, frequency of 90 Hz and injected air. Also with a longer treatment time inactivation rate was higher. After the 24 h recovery of treated samples was observed. Therefore the further optimization of method is needed to understand the mechanism of yeasts inactivation and cells recovery after the treatment. Acknowledgements: The authors would like to acknowledge the support by Croatian Science Foundation and research project ‘Application of electrical discharge plasma for preservation of liquid foods’.

Keywords: rhodotorula spp. 74, electrical discharge plasma, inactivation, stress response

Procedia PDF Downloads 226
389 Economical and Environmental Impact of Deforestation on Charcoal Production in Gaza Province

Authors: Paulo Cumbe

Abstract:

This work analyzes the economic and environmental impact of the exploitation of forest resources on populations and their sustainability in the regions where it occurs. There is an intensive and continuous activity of charcoal production, in the Massingir and Mabalane districts, in Gaza, Mozambique, to supply the most used fuel that is used by the population of the capital city, Maputo. Charcoal production is one of the sources of income for several families. However, it causes a negative environmental impact on biodiversity. We have analyzed different studies carried out in these communities that measure the speed, the level, and the impact of deforestation involving different actors, to deepen our understanding of this issue. The results of these studies reveal that the degraded area in five years would need one hundred years to be restored, which is unsustainable from an environmental point of view it is. Populations seek new areas for the same practice to maintain their livelihood, progressing with ecosystem degradation and increasing carbon dioxide emissions into the atmosphere. It is believed that environmental education, creation, and dissemination of new forms of charcoal production that are more profitable and less aggressive to the environment and forest repopulation actions need to be carried out to guarantee the sustainable development of the populations in these regions.

Keywords: deforestation, emissions, sustainability, charcoal

Procedia PDF Downloads 59
388 Study of the Adhesive Bond Effect on Electro-Mechanical Behaviour of Coupled Piezo Structural System

Authors: Rahul S. Raj

Abstract:

Electro-mechanical impedance technique is a recently developed non-destructive method for structural health monitoring. This system comprises of piezo electric patch, bonded to the structure using an adhesive/epoxy and electrically excited to determine the health of the component. The subjected electric field actuates the PZT patch harmonically and imparts a force on the host structure. The structural response thus produced by the host component is in the form of peaks and valleys which further shows the admittance signatures of the structure for the given excitation frequency. Adhesives have the capability to change the structural signatures, in EMI technique, by transforming conductance and susceptance signatures. The static approximation provide a justifiable result where adhesive bond lines are thin and stiff. The epoxy adhesive bonds limits design flexibility due to poor bond strengths, hence to enhance the performance of the joints, a new technique is developed for joining PZT, i.e. the alloy bonding technique. It is a metallic joining compound which contains many active elements including Titanium, that reacts with the tenacious surface films of the ceramic and composites to create excellent bonds. This alloy-based bonding technique will be used for better strain interaction and rigorous stress transfer between PZT patch and the host structure.

Keywords: EMI technique, conductance, susceptance, admittance, alloy bonding

Procedia PDF Downloads 110
387 Scenario-Based Analysis of Electric Vehicle Penetration in Road Transportation in Laos

Authors: Bouneua Khamphilavanh, Toshihiko Masui

Abstract:

The penetration of EV (electric vehicle) technology in Lao road transportation, in this study, was analyzed by using the AIM/CGE [Laos] model. The computable general equilibrium (CGE) model was developed by the Asia-Pacific Integrated Model (AIM) team. In line with the increase of the number of road vehicles, the energy demand in the transport sector has been gradually increased which resulted in a large amount of budget spent for importing fossil fuels during the last decade, and a high carbon dioxide emission from the transport sector, hence the aim of this research is to analyze the impact of EVs penetration on economic and CO₂ emission in short-term, middle-term, and long-term. By the year 2050, the expected gross domestic product (GDP) value, due to Laos will spend more budget for importing the EV, will be gradually lost up to one percent. The cumulative CO₂ emission from 2020 to 2050 in BAU case will be 12,000 GgCO₂eq, and those in the EV mitigation case will be 9,300 GgCO₂eq, which accounting for likely 77% cumulative CO₂ emission reduction in the road transport sector by introducing the EV technology.

Keywords: GDP, CO₂ mitigation, CGE model, EV technology, transport

Procedia PDF Downloads 259
386 Development of an Advanced Power Ultrasonic-Assisted Drilling System

Authors: M. A. Moghaddas, M. Short, N. Wiley, A. Y. Yi, K. F. Graff

Abstract:

The application of ultrasonic vibrations to machining processes has a long history, ranging from slurry-based systems able to drill brittle materials, to more recent developments involving low power ultrasonics for high precision machining, with many of these at the research and laboratory stages. The focus of this development is the application of high levels of ultrasonic power (1,000’s of watts) to standard, heavy duty machine tools – drilling being the immediate focus, with developments in milling in progress – with the objective of dramatically increasing system productivity through faster feed rates, this benefit arising from the thrust force reductions obtained by power ultrasonic vibrations. The presentation will describe development of an advanced drilling system based on a special, acoustically designed, rugged drill module capable of functioning under heavy duty production conditions, and making use of standard tool holder means, and able to obtain thrust force reductions while maintaining or improving surface finish and drilling accuracy. The characterization of the system performance will be described, and results obtained in drilling several materials (Aluminum, Stainless steel, Titanium) presented.

Keywords: dimensional accuracy, machine tool, productivity, surface roughness, thrust force, ultrasonic vibrations, ultrasonic-assisted drilling

Procedia PDF Downloads 270
385 Electromagnetic and Physicochemical Properties in the Addition of Silicon Oxide on the SSPS Renewable Films

Authors: Niloofar Alipoormazandarani

Abstract:

The rift environmental, efficiency and being environmental-friendly of these innovative food packaging in edible films made them as an alternative to synthetic packages. This issue has been widely studied in this experiment. Some of the greatest advances in food packaging industry is associated with nanotechnology. Recently, a polysaccharide extracted from the cell wall of soybean cotyledons: A soluble soybean polysaccharide (SSPS), a pectin-like structure. In this study, the addition (0%, 1%, 3%, and 5%) of nano silica dioxide (SiO2) film is examined SSPS in different features. The research aims to investigate the effect of nano-SiO2 on the physicochemical and electromagnetic properties of the SSPS films were sonicated and then heated to the melting point, besides the addition of plasticizer. After that, it has been cooled into the room temperature and were dried with Casting method. In final examinations,improvement in Moisture Content and Water Absorption was observed with a significant decrease.Also, in Color measurements there were some obvious differences. These reports indicate that the incorporation of nano-SiO2 and SSPS has the power to be extensively used in pharmaceutical and food packaging industry as well.

Keywords: SSPS, NanoSiO2, food packaging, renewable films

Procedia PDF Downloads 378
384 Properties of Ground Granulated Blast Furnace Slag Based Geopolymer Concrete

Authors: Niragi Dave, Ruchika Lalit

Abstract:

Concrete is one of the most widely used materials across the globe mostly second to water and generating high carbon dioxide emission during its whole manufacturing due to the presence of cement as an ingredient. Therefore it is necessary to find an alternative material to the Portland cement. This study focused on the use of Ground Granulated Blast Furnace Slag as geopolymer binder. Geopolymer concrete can be an alternative material which is produced by the chemical reaction of inorganic molecules. On the other hand, waste generating from power plants and other industries like iron and steel industries can be effectively used which has disposal problems. Therefore in this study geopolymer concrete is manufactured by 100% replacement of cement content by ground granulated blast furnace slag and a combination of sodium silicate and sodium hydroxide is used as an alkaline solution. The results have shown that the compressive strengths increased with increasing curing time and type of alkali activators. Naphthalene sulfonate-based superplasticizer performed better than other superplasticizers. All the specimens have been cast at ambient temperature.

Keywords: alkali activators, concrete, geopolymer, ground granulated blast furnace slag

Procedia PDF Downloads 308
383 Performance Analysis of Solar Assisted Air Condition Using Carbon Dioxide as Refrigerant

Authors: Olusola Bamisile, Ferdinard Dika, Mustafa Dagbasi, Serkan Abbasoglu

Abstract:

The aim of this study was to model an air conditioning system that brings about effective cooling and reduce fossil fuel consumption with solar energy as an alternative source of energy. The objective of the study is to design a system with high COP, low usage of electricity and to integrate solar energy into AC systems. A hybrid solar assisted air conditioning system is designed to produce 30kW cooling capacity and R744 (CO₂) is used as a refrigerant. The effect of discharge pressure on the performance of the system is studied. The subcool temperature, evaporating temperature (5°C) and suction gas return temperature (12°C) are kept constant for the four different discharge pressures considered. The cooling gas temperature is set at 25°C, and the discharge pressure includes 80, 85, 90 and 95 bars. Copeland Scroll software is used for the simulation. A pressure-enthalpy graph is also used to deduce each enthalpy point while numerical methods were used in making other calculations. From the result of the study, it is observed that a higher COP is achieved with the use of solar assisted systems. As much as 46% of electricity requirements will be save using solar input at compressor stage.

Keywords: air conditioning, solar energy, performance, energy saving

Procedia PDF Downloads 133