Search results for: Duncan-Chang deformation parameters
3166 Coupled Analysis for Hazard Modelling of Debris Flow Due to Extreme Rainfall
Authors: N. V. Nikhil, S. R. Lee, Do Won Park
Abstract:
Korean peninsula receives about two third of the annual rainfall during summer season. The extreme rainfall pattern due to typhoon and heavy rainfall results in severe mountain disasters among which 55% of them are debris flows, a major natural hazard especially when occurring around major settlement areas. The basic mechanism underlined for this kind of failure is the unsaturated shallow slope failure by reduction of matric suction due to infiltration of water and liquefaction of the failed mass due to generation of positive pore water pressure leading to abrupt loss of strength and commencement of flow. However only an empirical model cannot simulate this complex mechanism. Hence, we have employed an empirical-physical based approach for hazard analysis of debris flow using TRIGRS, a debris flow initiation criteria and DAN3D in mountain Woonmyun, South Korea. Debris flow initiation criteria is required to discern the potential landslides which can transform into debris flow. DAN-3D, being a new model, does not have the calibrated values of rheology parameters for Korean conditions. Thus, in our analysis we have used the recent 2011 debris flow event in mountain Woonmyun san for calibration of both TRIGRS model and DAN-3D, thereafter identifying and predicting the debris flow initiation points, path, run out velocity, and area of spreading for future extreme rainfall based scenarios.Keywords: debris flow, DAN-3D, extreme rainfall, hazard analysis
Procedia PDF Downloads 2493165 Biology of Salema (Sarpa Salpa (L.)) and Population off Gökceada (Northern Aegean Sea, Türkiye): A Macro herbivore Species Living in Sea Grass Beds
Authors: Zeliha Erdogan, Hatice Torcu Koc
Abstract:
The fish, Sarpa salpa (L.), is one of the main macroherbivores in the Mediterranean. A total of 600 Salema individuals were collected from around Gökçeada, Sea of Northern Aegean, between January 2014 and January 2015 in order to evaluate some information on the biology of the Salema population. For this aim, measurements of the Salema were obtained using a caliper. The age readings were made from otoliths. The population was composed of 6 age classes (I-VI). The total lengths and total weights of sampled fish were determined to be ranged from 12.5 to 33.1 cm and 33.57 to 559.33 g, respectively. Length-weight relationship for all individuals was calculated as W=0.0085*L3.1723, R2=0.9524. Growth parameters were determined as L∞= 35.55cm, k=0.31, t0= -9.2, '=2.60. As the sexual ratio was 1.08:1 (M: F), the Salema population consisted of 51.66% male and 47.5% female individuals. The highest average condition factors were observed for females in May (1.68) and for males in May (1.67). According to gonad somatic index values, the spawning period was determined twice a year in spring (April) and autumn (October). The highest average hepatosomatix index value was observed for all individuals in May and December. It was estimated that total (Z) mortality, natural (M) mortality, and fishing (F) mortality rates were Z=0.44 year-1, M=0.064 year-1 and F=0.38 year-1, respectively. As the exploitation rate was estimated as E=0.86, it can be shown that the Salema stock was highly influenced by overfishing.Keywords: biology, sarpa salpa, Gökceada, meadows
Procedia PDF Downloads 863164 Probing Language Models for Multiple Linguistic Information
Authors: Bowen Ding, Yihao Kuang
Abstract:
In recent years, large-scale pre-trained language models have achieved state-of-the-art performance on a variety of natural language processing tasks. The word vectors produced by these language models can be viewed as dense encoded presentations of natural language that in text form. However, it is unknown how much linguistic information is encoded and how. In this paper, we construct several corresponding probing tasks for multiple linguistic information to clarify the encoding capabilities of different language models and performed a visual display. We firstly obtain word presentations in vector form from different language models, including BERT, ELMo, RoBERTa and GPT. Classifiers with a small scale of parameters and unsupervised tasks are then applied on these word vectors to discriminate their capability to encode corresponding linguistic information. The constructed probe tasks contain both semantic and syntactic aspects. The semantic aspect includes the ability of the model to understand semantic entities such as numbers, time, and characters, and the grammatical aspect includes the ability of the language model to understand grammatical structures such as dependency relationships and reference relationships. We also compare encoding capabilities of different layers in the same language model to infer how linguistic information is encoded in the model.Keywords: language models, probing task, text presentation, linguistic information
Procedia PDF Downloads 1163163 Photocatalytic Degradation of Toxic Phenols Using Zinc Oxide Doped Prussian Blue Nanocomposite
Authors: Rachna, Uma Shanker
Abstract:
Aromatic phenols, being priority pollutants, are found in various industrial effluents and seeking the attention of environmentalists worldwide, owing to their life-threatening effects. In the present study, the coupling of zinc oxide with Prussian blue was achieved involving co-precipitation synthesis process using Azadirachta indica plant extract. The fabricated nanocatalyst was employed for the sunlight mediated photodegradation of various phenols (Phenol, 3-Aminophenol, and 2,4-Dinitrophenol). Doping of zinc oxide with Prussian blue caused an increase in the surface area to value 80.109 m²g⁻¹ and also enhanced the semiconducting tendency of the nanocomposite with band gap energy 1.101 eV. The experiment was performed at different parameters of phenols concentration, catalyst amount, pH, time, and exposure of sunlight. The obtained results showed a lower elimination of 2,4-DNP (93%) than 3-AP (97%) and phenol (95%) owing to their molecular weight and basicity differences. In comparison to the starting material (zinc oxide and Prussian blue), nanocomposite was more capable in degrading the phenols and lowered the t1/2 value of phenol (4.405 h), 3-AP (4.04 h) and 2,4-DNP (4.68 h) to a greater extent. Effect of different foreign anions was also studied to check nanocomposite’s liability under natural conditions. The extent of charge recombination being the most limiting factor in the photodegradation of pollutants was determined through the photoluminescence. Sunlight active ZnO@FeHCF nanocomposite was proven to exhibit good catalytic ability up to 10 cycles.Keywords: nanocomposite, phenols, photodegradation, sunlight, water
Procedia PDF Downloads 1313162 Oral Biofilm and Stomatitis Denture: Local Implications and Cardiovascular Risks
Authors: Adriana B. Ribeiro, Camila B. Araujo, Frank L. Bueno, Luiz Eduardo V. Silva, Caroline V. Fortes, Helio C. Salgado, Rubens Fazan Jr., Claudia H. L. da Silva
Abstract:
Denture-related stomatitis (DRS) has recently been associated with deleterious cardiovascular effects, including hypertension. This study evaluated salivary parameters, blood pressure (BP) and heart rate variability (HRV), before and after DRS treatment in edentulous patients (n=14). Collection of unstimulated and stimulated saliva, as well as blood pressure (BP) measurements and electrocardiogram recordings were performed before and after 10 days of DRS treatment. The salivary flow (mL/min) was found similar at both times while pH was smaller (more neutral) after treatment (7.3 ± 2.2 vs. 7.1 ± 0.24). Systolic BP (mmHg) showed a trend, but not a significant reduction after DRS treatment (158 ± 25.68 vs. 148 ± 16,72, p=0,062) while diastolic BP was found similar in both times (86 ± 13.93 and 84 ± 9.38). Overall HRV, measured by standard deviation of RR intervals was not affected by DRS treatment (24 ± 4 vs 18 ± 2 ms), but differences of successive RR intervals (an index of parasympathetic cardiac modulation) increased after the treatment (26 ± 4 vs 19 ± 2 ms). Moreover, another index of vagal modulation of the heart, the power of RR interval spectra at high-frequency, was also markedly higher after DRS treatment (236 ± 63 vs 135 ± 32 ms²). Such findings strongly suggest that DRS is linked to an autonomic imbalance with sympathetic overactivity, which is markedly deleterious, increasing cardiovascular risk and the incidence of diseases such as hypertension. Acknowledgment: This study is supported by FAPESP, CNPq.Keywords: biofilm, denture stomatitis, HRV, blood pressure
Procedia PDF Downloads 2483161 Verification of Simulated Accumulated Precipitation
Authors: Nato Kutaladze, George Mikuchadze, Giorgi Sokhadze
Abstract:
Precipitation forecasts are one of the most demanding applications in numerical weather prediction (NWP). Georgia, as the whole Caucasian region, is characterized by very complex topography. The country territory is prone to flash floods and mudflows, quantitative precipitation estimation (QPE) and quantitative precipitation forecast (QPF) at any leading time are very important for Georgia. In this study, advanced research weather forecasting model’s skill in QPF is investigated over Georgia’s territory. We have analyzed several convection parameterization and microphysical scheme combinations for different rainy episodes and heavy rainy phenomena. We estimate errors and biases in accumulated 6 h precipitation using different spatial resolution during model performance verification for 12-hour and 24-hour lead time against corresponding rain gouge observations and satellite data. Various statistical parameters have been calculated for the 8-month comparison period, and some skills of model simulation have been evaluated. Our focus is on the formation and organization of convective precipitation systems in a low-mountain region. Several problems in connection with QPF have been identified for mountain regions, which include the overestimation and underestimation of precipitation on the windward and lee side of the mountains, respectively, and a phase error in the diurnal cycle of precipitation leading to the onset of convective precipitation in model forecasts several hours too early.Keywords: extremal dependence index, false alarm, numerical weather prediction, quantitative precipitation forecasting
Procedia PDF Downloads 1553160 Surface Integration Effect on Mechanical and Piezoelectric Properties of ZnO
Authors: A. Khan, M. Hussain, S. Afgun
Abstract:
In the present work, the effect of the surface integration on the piezoelectric properties of zinc oxide (ZnO) nanorods has been investigated. ZnO nanorods were grown by using aqueous chemical growth method on two samples of graphene coated pet plastic substrate. First substrate’s surface was integrated with ZnO nanoparticles while the other substrate was used without ZnO nanoparticles. Various important parameters were analyzed, the growth density and morphological analysis were taken into account through surface scanning electron microscopy; it was observed that the growth density of nanorods on the integrated surface was much higher than the nonintegrated substrate. The crystal quality of growth orientation was analyzed by X-ray diffraction technique. Mechanical stability of ZnO nanorods on an integrated substrate was more appropriate than the nonintegrated substrate. The generated amount of piezoelectric potential from the integrated substrate was two times higher than the nonintegrated substrate. This shows that the layer of nanoparticles plays a crucial role in the enhancement of piezoelectric potential. Besides this, it also improves the performance of fabricated devices like its mechanical stability and piezoelectric properties. Additionally, the obtained results were compared with the other two samples used for the growth of ZnO nanorods on silver coated glass substrates for similar measurement. The consistency of the results verified the importance of surface integration effect. This study will help us to fabricate improved performance devices by using surface integrated substrates.Keywords: ZnO nanorods, surface integration, mechanical properties, harvesting piezoelectricity
Procedia PDF Downloads 1403159 Controlling Interactions and Non-Equilibrium Steady State in Spinning Active Matter Monolayers
Authors: Joshua Paul Steimel, Michael Pappas, Ethan Hall
Abstract:
Particle-particle interactions are critical in determining the state of an active matter system. Unique and ubiquitous non-equilibrium behavior like swarming, vortexing, spiraling, and much more is governed by interactions between active units or particles. In hybrid active-passive matter systems, the attraction between spinning active units in a 2D monolayer of passive particles is controlled by the mechanical behavior of the passive monolayer. We demonstrate here that the range and dynamics of this attraction can be controlled by changing the composition of the passive monolayer by adding dopant passive particles. These dopant passive particles effectively pin the movement of dislocation motion in the passive media and reduce the probability of defect motion required to erode the bridge of passive particles between active spinners, thus reducing the range of attraction. Additionally, by adding an out of plane component to the magnetic moment and creating a top-like motion a short range repulsion emerges between the top-like particle. At inter-top distances less than four particle diameters apart, the tops repel but beyond that, distance attract up to 13 particle diameters apart. The tops were also able to locally and transiently anneal the passive monolayer. Thus we demonstrate that by tuning several parameters of the hybrid active matter system, one can observe very different emergent behavior.Keywords: active matter, colloids, ferromagnetic, annealing
Procedia PDF Downloads 1153158 Hepatoprotective Effect of Oleuropein against Cisplatin-Induced Liver Damage in Rat
Authors: Salim Cerig, Fatime Geyikoglu, Murat Bakir, Suat Colak, Merve Sonmez, Kubra Koc
Abstract:
Cisplatin (CIS) is one of the most effective an anticancer drug and also toxic to cells by activating oxidative stress. Oleuropein (OLE) has key role against oxidative stress in mammalian cells, but the role of this antioxidant in the toxicity of CIS remains unknown. The aim of the present study was to investigate the efficacy of OLE on CIS-induced liver damages in male rats. With this aim, male Sprague Dawley rats were randomly assigned to one of eight groups: Control group; the group treated with 7 mg/kg/day CIS; the groups treated with 50, 100 and 200 mg/kg/day OLE (i.p.); and the groups treated with OLE for three days starting at 24 h following CIS injection. After 4 days of injections, serum was provided to assess the blood AST, ALT and LDH values. The liver tissues were removed for histological, biochemical (TAC, TOS and MDA) and genotoxic evaluations. In the CIS treated group, the whole liver tissue showed significant histological changes. Also, CIS significantly increased both the incidence of oxidative stress and the induction of 8-hydroxy-deoxyguanosine (8-OH-dG). Moreover, the rats taking CIS have abnormal results on liver function tests. However, these parameters reached to the normal range after administration of OLE for 3 days. Finally, OLE demonstrated an acceptable high potential and was effective in attenuating CIS-induced liver injury. In this trial, the 200 mg/kg dose of OLE firstly appeared to induce the most optimal protective response.Keywords: antioxidant response, cisplatin, histology, liver, oleuropein, 8-OhdG
Procedia PDF Downloads 3443157 Effect of Microencapsulated Butyric Acid Supplementation on Growth Performance, Ileal Digestibility of Protein, Gut Health and Immunity in Broilers
Authors: Saeed Ahmed, Muhammad Imran, Yasir Allah Ditta, Shahid Mehmood, Zahid Rasool
Abstract:
A study was conducted to investigate the effect of different levels of microencapsulated butyric (MEB) on growth performance, gut health and immunity in commercial broiler chickens. In total, 336 day-old Hubbard classic broilers chicks were randomly assigned to 4 dietary treatments (Control, 0.25, 0.35 and 0.45g/kg of butyric acid) under completely randomized design. Each treatment was replicated 3 times with 28 birds in each replicate. Feed intake, body weight gain, feed conversion ratio, intestinal morphology, apparent ileal digestibility of protein and immunity parameters were evaluated. At the end of the experiment (35-d) 3 birds/replicate in each group were randomly selected and slaughtered to collect blood, duodenal samples and ileal digesta. The data were analyzed by using ANOVA technique. The results indicated improved body weight gain (P = 0.0222), feed conversion ratio (P = 0.0056), duodenal villus height (P = 0.0512), AID (P = 0.0098) antibody titer against Newcastle disease improved (P = 0.0326). Treatments remained unresponsive with respect to feed intake (P = 0.9685).Keywords: butyric acid, broilers, gut health, ileal digestibility
Procedia PDF Downloads 3283156 Parametric Analysis and Optimal Design of Functionally Graded Plates Using Particle Swarm Optimization Algorithm and a Hybrid Meshless Method
Authors: Foad Nazari, Seyed Mahmood Hosseini, Mohammad Hossein Abolbashari, Mohammad Hassan Abolbashari
Abstract:
The present study is concerned with the optimal design of functionally graded plates using particle swarm optimization (PSO) algorithm. In this study, meshless local Petrov-Galerkin (MLPG) method is employed to obtain the functionally graded (FG) plate’s natural frequencies. Effects of two parameters including thickness to height ratio and volume fraction index on the natural frequencies and total mass of plate are studied by using the MLPG results. Then the first natural frequency of the plate, for different conditions where MLPG data are not available, is predicted by an artificial neural network (ANN) approach which is trained by back-error propagation (BEP) technique. The ANN results show that the predicted data are in good agreement with the actual one. To maximize the first natural frequency and minimize the mass of FG plate simultaneously, the weighted sum optimization approach and PSO algorithm are used. However, the proposed optimization process of this study can provide the designers of FG plates with useful data.Keywords: optimal design, natural frequency, FG plate, hybrid meshless method, MLPG method, ANN approach, particle swarm optimization
Procedia PDF Downloads 3713155 Wiedemann-Franz Law Violation Domain for Graphene and Nonrelativistic Systems
Authors: Thandar Zaw Win, Cho Win Aung, Gaurav Khandal, Sabyasachi Ghosh
Abstract:
Systematic and comparative research on Lorenz ratios for graphene and nonrelativistic systems has been studied to identify their Wiedemann-Franz law violation domain. Fermi energy and temperature are the main governing parameters for deciding the values of the Lorenz ratio, which is basically thermal conductivity divided by electrical conductivity times temperature times Lorenz number. Metals as three-dimensional nonrelativistic electron gas are located at higher Fermi-energy by temperature domain, where Lorenz ratio remains one. Hence, they obey the Wiedemann-Franz law. By creating higher doping in a two-dimensional graphene system, one can again reach a higher Fermi-energy by temperature domain and get a constant Lorenz ratio. For both graphene and nonrelativistic systems, the Lorenz ratio goes below one if we go lower Fermi-energy by temperature domain, which is possible for the graphene system by decreasing the doping concentration. Experimentally observed greater than one Lorenz ratio in this lower Fermi-energy by temperature domain or Dirac Fluid domain indicates that nonfluid expressions of Lorenz ratio should be replaced by fluidtype expressions. We have noticed a divergent trend of Lorenz ratio in the Dirac Fluid domain using its fluid-type expression, and it matches the trend of experimental data.Keywords: graphene, Lorentz ratio, specific heat, Wiedeann-Franz law
Procedia PDF Downloads 393154 Separation of Copper(II) and Iron(III) by Solvent Extraction and Membrane Processes with Ionic Liquids as Carriers
Authors: Beata Pospiech
Abstract:
Separation of metal ions from aqueous solutions is important as well as difficult process in hydrometallurgical technology. This process is necessary for obtaining of clean metals. Solvent extraction and membrane processes are well known as separation methods. Recently, ionic liquids (ILs) are very often applied and studied as extractants and carriers of metal ions from aqueous solutions due to their good extractability properties for various metals. This work discusses a method to separate copper(II) and iron(III) from hydrochloric acid solutions by solvent extraction and transport across polymer inclusion membranes (PIM) with the selected ionic liquids as extractants/ion carriers. Cyphos IL 101 (trihexyl(tetradecyl)phosphonium chloride), Cyphos IL 104 (trihexyl(tetradecyl)phosphonium bis(2,4,4 trimethylpentyl)phosphi-nate), trioctylmethylammonium thiosalicylate [A336][TS] and trihexyl(tetradecyl)phosphonium thiosalicylate [PR4][TS] were used for the investigations. Effect of different parameters such as hydrochloric acid concentration in aqueous phase on iron(III) and copper(II) extraction has been investigated. Cellulose triacetate membranes with the selected ionic liquids as carriers have been prepared and applied for transport of iron(IIII) and copper(II) from hydrochloric acid solutions.Keywords: copper, iron, ionic liquids, solvent extraction
Procedia PDF Downloads 2833153 The Effect of Proper Drainage on the Cost of Building and Repairing Roads
Authors: Seyed Abbas Tabatabaei, Saeid Amini, Hamid Reza Ghafouri
Abstract:
One of the most important factors in flexible pavement failure is the lack of proper drainage along the roads. Water on the Paving Systems is one of the main parameters of pavement failure. Though, if water is discharged without delay and prior to discharge in order to prevent damaging the pavement the lifetime of the pavement will be considerably increased. In this study, duration of water stay and materials properties in pavement systems and the effects of aggregate gradation, and hydraulic conductivity of the drainage rate and Effects of subsurface drainage systems, drainage and reduction in the lifetime of the pavement have been studied. The study conducted in accordance with the terms offered can be concluded as under. The more hydraulic conductivity the less drainage time and the use of sub-surface drainage system causes two to three times of the pavement lifetime. In this research it has been tried by study and calculate the drained and undrained pavements lifetime by considering the effectiveness of water and drainage coefficient on flexible materials modulus and by using KENLAYER software to compare the present value cost of these pavements has been paid for a 20 year lifetime design. In this study, 14 pavement sections have been considered, of which 7 sections have been drained and 7 other not. Results show that drained pavements have more initial costs but the failure severity is so little in them and have longer lifetime for a 20 year lifetime design, the drained pavements seem so economic.Keywords: drainage, base and sub-base, elasticity modulus, aggregation
Procedia PDF Downloads 3743152 Characteristics and Quality of Chilean Abalone Undergoing Different Drying Emerging Technologies
Authors: Mario Pérez-Won, Anais Palma-Acevedo, Luis González-Cavieres, Roberto Lemus-Mondaca, Gipsy Tabilo-Munizaga
Abstract:
The Chilean abalone (Concholepas Concholepas) is a gastropod mollusk; it has a high commercial value due to the qualities of its meat, especially hardness, as a critical acceptance parameter. However, its main problem is its short shelf-life which is usually extended using traditional technologies with high energy consumption. Therefore, applying different technologies for the pre-treatment and drying process is necessary. In this research, pulsed electric field (PEF) was used as a pre-treatment for vacuum microwave drying (VMD), freeze-drying (FD), and hot-air drying (HAD). Drying conditions and characteristics were set according to previous experiments. The Drying samples were analyzed in terms of physical quality (color, texture, microstructure, and rehydration capacity), protein quality (degree of hydrolysis and computer protein efficiency ratio), and energy parameters. Regarding quality, the treatment that obtained lower harness was PEF+FD (195 N ± 10), the lowest change of color was for treatment PEF+VMD (ΔE: 17 ± 1.5), and the best rehydration capacity was for treatment PEF+VMD (1.2 h for equilibrium). For protein quality, the highest Computer-Protein Efficiency Ratio was the sample 2.0 kV/ cm of PEF (index of 4.18 ± 0.26 at the end of the digestion). Moreover, about energetic consumption, results show that VMD decreases the drying process by 97% whether PEF was used or not. Consequently, it is possible to conclude that using PEF as a pre-treatment for VMD and FD treatments has advantages that must be used following the consumer’s needs or preferences.Keywords: chilean abalone, freeze-drying, proteins, pulsed electric fields
Procedia PDF Downloads 1133151 Continuous Fixed Bed Reactor Application for Decolourization of Textile Effluent by Adsorption on NaOH Treated Eggshell
Authors: M. Chafi, S. Akazdam, C. Asrir, L. Sebbahi, B. Gourich, N. Barka, M. Essahli
Abstract:
Fixed bed adsorption has become a frequently used industrial application in wastewater treatment processes. Various low cost adsorbents have been studied for their applicability in treatment of different types of effluents. In this work, the intention of the study was to explore the efficacy and feasibility for azo dye, Acid Orange 7 (AO7) adsorption onto fixed bed column of NaOH Treated eggshell (TES). The effect of various parameters like flow rate, initial dye concentration, and bed height were exploited in this study. The studies confirmed that the breakthrough curves were dependent on flow rate, initial dye concentration solution of AO7 and bed depth. The Thomas, Yoon–Nelson, and Adams and Bohart models were analysed to evaluate the column adsorption performance. The adsorption capacity, rate constant and correlation coefficient associated to each model for column adsorption was calculated and mentioned. The column experimental data were fitted well with Thomas model with coefficients of correlation R2 ≥0.93 at different conditions but the Yoon–Nelson, BDST and Bohart–Adams model (R2=0.911), predicted poor performance of fixed-bed column. The (TES) was shown to be suitable adsorbent for adsorption of AO7 using fixed-bed adsorption column.Keywords: adsorption models, acid orange 7, bed depth, breakthrough, dye adsorption, fixed-bed column, treated eggshell
Procedia PDF Downloads 3803150 Seed Priming Treatments in Common Zinnia (Zinnia elegans) Using Some Plant Extracts
Authors: Atakan Efe Akpınar, Zeynep Demir
Abstract:
Seed priming technologies are frequently used nowadays to increase the germination potential and stress tolerance of seeds. These treatments might be beneficial for native species as well as crops. Different priming treatments can be used depending on the type of plant, the morphology, and the physiology of the seed. Moreover, these may be various physical, chemical, and/or biological treatments. Aiming to improve studies about seed priming, ideas need to be brought into this technological sector related to the agri-seed industry. This study addresses the question of whether seed priming with plant extracts can improve seed vigour and germination performance. By investigating the effects of plant extract priming on various vigour parameters, the research aims to provide insights into the potential benefits of this treatment method. Thus, seed priming was carried out using some plant extracts. Firstly, some plant extracts prepared from plant leaves, roots, or fruit parts were obtained for use in priming treatments. Then, seeds of Common zinnia (Zinnia elegans) were kept in solutions containing plant extracts at 20°C for 48 hours. Seeds without any treatment were evaluated as the control group. At the end of priming applications, seeds are dried superficially at 25°C. Seeds of Common zinnia (Zinnia elegans) were analyzed for vigour (normal germination rate, germination time, germination index etc.). In the future, seed priming applications can expand to multidisciplinary research combining with digital, bioinformatic and molecular tools.Keywords: seed priming, plant extracts, germination, biology
Procedia PDF Downloads 793149 Quantification and Thermal Behavior of Rice Bran Oil, Sunflower Oil and Their Model Blends
Authors: Harish Kumar Sharma, Garima Sengar
Abstract:
Rice bran oil is considered comparatively nutritionally superior than different fats/oils. Therefore, model blends prepared from pure rice bran oil (RBO) and sunflower oil (SFO) were explored for changes in the different physicochemical parameters. Repeated deep fat frying process was carried out by using dried potato in order to study the thermal behaviour of pure rice bran oil, sunflower oil and their model blends. Pure rice bran oil and sunflower oil had shown good thermal stability during the repeated deep fat frying cycles. Although, the model blends constituting 60% RBO + 40% SFO showed better suitability during repeated deep fat frying than the remaining blended oils. The quantification of pure rice bran oil in the blended oils, physically refined rice bran oil (PRBO): SnF (sunflower oil) was carried by different methods. The study revealed that regression equations based on the oryzanol content, palmitic acid composition and iodine value can be used for the quantification. The rice bran oil can easily be quantified in the blended oils based on the oryzanol content by HPLC even at 1% level. The palmitic acid content in blended oils can also be used as an indicator to quantify rice bran oil at or above 20% level in blended oils whereas the method based on ultrasonic velocity, acoustic impedance and relative association showed initial promise in the quantification.Keywords: rice bran oil, sunflower oil, frying, quantification
Procedia PDF Downloads 3133148 Carbon-Nanodots Modified Glassy Carbon Electrode for the Electroanalysis of Selenium in Water
Authors: Azeez O. Idris, Benjamin O. Orimolade, Potlako J. Mafa, Alex T. Kuvarega, Usisipho Feleni, Bhekie B. Mamba
Abstract:
We report a simple and cheaper method for the electrochemical detection of Se(IV) using carbon nanodots (CNDTs) prepared from oat. The carbon nanodots were synthesised by green and facile approach and characterised using scanning electron microscopy, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and Raman spectroscopy. The CNDT was used to fabricate an electrochemical sensor for the quantification of Se(IV) in water. The modification of glassy carbon electrode (GCE) with carbon nanodots led to an increase in the electroactive surface area of the electrode, which enhances the redox current peak of [Fe(CN)₆]₃₋/₄‒ in comparison to the bare GCE. Using the square wave voltammetry, the detection limit and quantification limit of 0.05 and 0.167 ppb were obtained under the optimised parameters using deposition potential of -200 mV, 0.1 M HNO₃ electrolyte, electrodeposition time of 60 s, and pH 1. The results further revealed that the GCE-CNDT was not susceptible to many interfering cations except Cu(II) and Pb(II), and Fe(II). The sensor fabrication involves a one-step electrode modification and was used to detect Se(IV) in a real water sample, and the result obtained is in agreement with the inductively coupled plasma technique. Overall, the electrode offers a cheap, fast, and sensitive way of detecting selenium in environmental matrices.Keywords: carbon nanodots, square wave voltammetry, nanomaterials, selenium, sensor
Procedia PDF Downloads 953147 Stability Analysis of Stagnation-Point Flow past a Shrinking Sheet in a Nanofluid
Authors: Amin Noor, Roslinda Nazar, Norihan Md. Arifin
Abstract:
In this paper, a numerical and theoretical study has been performed for the stagnation-point boundary layer flow and heat transfer towards a shrinking sheet in a nanofluid. The mathematical nanofluid model in which the effect of the nanoparticle volume fraction is taken into account is considered. The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations using a similarity transformation which is then solved numerically using the function bvp4c from Matlab. Numerical results are obtained for the skin friction coefficient, the local Nusselt number as well as the velocity and temperature profiles for some values of the governing parameters, namely the nanoparticle volume fraction Φ, the shrinking parameter λ and the Prandtl number Pr. Three different types of nanoparticles are considered, namely Cu, Al2O3 and TiO2. It is found that solutions do not exist for larger shrinking rates and dual (upper and lower branch) solutions exist when λ < -1.0. A stability analysis has been performed to show which branch solutions are stable and physically realizable. It is also found that the upper branch solutions are stable while the lower branch solutions are unstable.Keywords: heat transfer, nanofluid, shrinking sheet, stability analysis, stagnation-point flow
Procedia PDF Downloads 3853146 Effects of Variable Properties and Double Dispersion on Magnetohydrodynamic (MHD) Mixed Convection in a Power-Law Fluid Saturated Non-Darcy Porous Medium
Authors: Pranitha Janapatla, Venkata Suman Gontla
Abstract:
The present paper investigates the effects of MHD, double dispersion and variable properties on mixed convection flow from a vertical surface in a power-law fluid saturated non-Darcy porous medium. The governing non-linear partial differential equations are reduced to a system of ordinary differential equations by using a special form of Lie group transformations viz. scaling group of transformations. These ordinary differential equations are solved numerically by using Shooting technique. The influence of relevant parameters on the non-dimensional velocity, temperature, concentration for pseudo-plastic fluid, Newtonian and dilatant fluid are discussed and displayed graphically. The behavior of heat and mass transfer coefficients are shown in tabular form. Comparisons with the published works are performed and are found to be in very good agreement. From this analysis, it is observed that an increase in variable viscosity causes to decrease in velocity profile and increase the temperature and concentration distributions. It is also concluded that increase in the solutal dispersion decreases the velocity and concentration but raises the temperature profile.Keywords: power-law fluid, thermal conductivity, thermal dispersion, solutal dispersion, variable viscosity
Procedia PDF Downloads 2393145 Development of Advanced Linear Calibration Technique for Air Flow Sensing by Using CTA-Based Hot Wire Anemometry
Authors: Ming-Jong Tsai, T. M. Wu, R. C. Chu
Abstract:
The purpose of this study is to develop an Advanced linear calibration Technique for air flow sensing by using CTA-based Hot wire Anemometry. It contains a host PC with Human Machine Interface, a wind tunnel, a wind speed controller, an automatic data acquisition module, and nonlinear calibration model. To improve the fitting error by using single fitting polynomial, this study proposes a Multiple three-order Polynomial Fitting Method (MPFM) for fitting the non-linear output of a CTA-based Hot wire Anemometry. The CTA-based anemometer with built-in fitting parameters is installed in the wind tunnel, and the wind speed is controlled by the PC-based controller. The Hot-Wire anemometer's thermistor resistance change is converted into a voltage signal or temperature differences, and then sent to the PC through a DAQ card. After completion measurements of original signal, the Multiple polynomial mathematical coefficients can be automatically calculated, and then sent into the micro-processor in the Hot-Wire anemometer. Finally, the corrected Hot-Wire anemometer is verified for the linearity, the repeatability, error percentage, and the system outputs quality control reports.Keywords: flow rate sensing, hot wire, constant temperature anemometry (CTA), linear calibration, multiple three-order polynomial fitting method (MPFM), temperature compensation
Procedia PDF Downloads 4203144 Thermodynamics of Random Copolymers in Solution
Authors: Maria Bercea, Bernhard A. Wolf
Abstract:
The thermodynamic behavior for solutions of poly (methyl methacrylate-ran-t-butyl methacrylate) of variable composition as compared with the corresponding homopolymers was investigated by light scattering measurements carried out for dilute solutions and vapor pressure measurements of concentrated solutions. The complex dependencies of the Flory Huggins interaction parameter on concentration and copolymer composition in solvents of different polarity (toluene and chloroform) can be understood by taking into account the ability of the polymers to rearrange in a response to changes in their molecular surrounding. A recent unified thermodynamic approach was used for modeling the experimental data, being able to describe the behavior of the different solutions by means of two adjustable parameters, one representing the effective number of solvent segments and another one accounting for the interactions between the components. Thus, it was investigated how the solvent quality changes with the composition of the copolymers through the Gibbs energy of mixing as a function of polymer concentration. The largest reduction of the Gibbs energy at a given composition of the system was observed for the best solvent. The present investigation proves that the new unified thermodynamic approach is a general concept applicable to homo- and copolymers, independent of the chain conformation or shape, molecular and chemical architecture of the components and of other dissimilarities, such as electrical charges.Keywords: random copolymers, Flory Huggins interaction parameter, Gibbs energy of mixing, chemical architecture
Procedia PDF Downloads 2843143 Characterization of Two Hybrid Welding Techniques on SA 516 Grade 70 Weldments
Authors: M. T. Z. Butt, T. Ahmad, N. A. Siddiqui
Abstract:
Commercially SA 516 Grade 70 is frequently used for the manufacturing of pressure vessels, boilers and storage tanks etc. in fabrication industry. Heat input is the major parameter during welding that may bring significant changes in the microstructure as well as the mechanical properties. Different welding technique has different heat input rate per unit surface area. Materials with large thickness are dealt with different combination of welding techniques to achieve required mechanical properties. In the present research two schemes: Scheme 1: SMAW (Shielded Metal Arc Welding) & GTAW (Gas Tungsten Arc Welding) and Scheme 2: SMAW & SAW (Submerged Arc Welding) of hybrid welding techniques have been studied. The purpose of these schemes was to study hybrid welding effect on the microstructure and mechanical properties of the weldment, heat affected zone and base metal area. It is significant to note that the thickness of base plate was 12 mm, also welding conditions and parameters were set according to ASME Section IX. It was observed that two different hybrid welding techniques performed on two different plates demonstrated that the mechanical properties of both schemes are more or less similar. It means that the heat input, welding techniques and varying welding operating conditions & temperatures did not make any detrimental effect on the mechanical properties. Hence, the hybrid welding techniques mentioned in the present study are favorable to implicate for the industry using the plate thickness around 12 mm thick.Keywords: grade 70, GTAW, hybrid welding, SAW, SMAW
Procedia PDF Downloads 3423142 Nonlinear Porous Diffusion Modeling of Ionic Agrochemicals in Astomatous Plant Cuticle Aqueous Pores: A Mechanistic Approach
Authors: Eloise C. Tredenick, Troy W. Farrell, W. Alison Forster, Steven T. P. Psaltis
Abstract:
The agriculture industry requires improved efficacy of sprays being applied to crops. More efficacious sprays provide many environmental and financial benefits. The plant leaf cuticle is known to be the main barrier to diffusion of agrochemicals within the leaf. The importance of a mathematical model to simulate uptake of agrochemicals in plant cuticles has been noted, as the results of each uptake experiments are specific to each formulation of active ingredient and plant species. In this work we develop a mathematical model and numerical simulation for the uptake of ionic agrochemicals through aqueous pores in plant cuticles. We propose a nonlinear porous diffusion model of ionic agrochemicals in isolated cuticles, which provides additions to a simple diffusion model through the incorporation of parameters capable of simulating plant species' variations, evaporation of surface droplet solutions and swelling of the aqueous pores with water. The model could feasibly be adapted to other ionic active ingredients diffusing through other plant species' cuticles. We validate our theoretical results against appropriate experimental data, discuss the key sensitivities in the model and relate theoretical predictions to appropriate physical mechanisms.Keywords: aqueous pores, ionic active ingredient, mathematical model, plant cuticle, porous diffusion
Procedia PDF Downloads 2663141 Prevalence of Thyroid Disorders in Pregnancy in Northern Algeria
Authors: Samira Akdader-Oudahmane, Assia Kamel, Lynda Lakabi, Michael Bruce Zimmermann, Zohra Hamouli-Said, Djamila Meskine
Abstract:
Background: Iodine is a trace element whose adequate intakes are essential during pregnancy to promote the correct growth and development of the fetus. Iodine deficiency is the cause of several disorders in foetal development, and thyroid disorders during pregnancy are associated with an increased risk of miscarriage or premature birth. The aim of this study was to assess the iodine status and thyroid function of pregnant women (PW) in northern Algeria. Methods: Healthy PW were recruited from an urban area (Algiers). Spot urine and venous blood samples were collected to assess iodine status (urinary iodine concentration, UIC) and serum thyroid hormones (TSH, FT4), and anti-thyroid peroxidase antibodies (TPO-Ab) concentrations. Results: The median UIC for the PW (n=172) in Algiers was 246,74µg/L, 244,68 µg/L, and 220,63µg/L, respectively, during the first, second, and third trimesters of pregnancy. Mean TSH and FT4 concentrations were within reference ranges in all groups of women. Among PW, 72.7%, 75.4%, and 75.5% in the first, second and third trimester were TPO-Ab+. Among PW, 14%, 10%, and 10% in the first, second and third trimester, respectively, with TPO -Ab+ had subclinical hypothyroidism. An analysis of the variations in the levels of the serum parameters (FT4, TSH and anti-TPO antibodies) was analyzed according to the UIC intervals admitted and show that these marker are predictive of thyroid function. Conclusion: In northern Algeria, median UICs indicate iodine sufficiency in PW. About 75% of PW are TPO-Ab+ and the prevalence of subclinical hypothyroidism is high.Keywords: thyroid, pregnant woman, urinary iodine, subclinical hypothyroidism
Procedia PDF Downloads 833140 Catchment Yield Prediction in an Ungauged Basin Using PyTOPKAPI
Authors: B. S. Fatoyinbo, D. Stretch, O. T. Amoo, D. Allopi
Abstract:
This study extends the use of the Drainage Area Regionalization (DAR) method in generating synthetic data and calibrating PyTOPKAPI stream yield for an ungauged basin at a daily time scale. The generation of runoff in determining a river yield has been subjected to various topographic and spatial meteorological variables, which integers form the Catchment Characteristics Model (CCM). Many of the conventional CCM models adapted in Africa have been challenged with a paucity of adequate, relevance and accurate data to parameterize and validate the potential. The purpose of generating synthetic flow is to test a hydrological model, which will not suffer from the impact of very low flows or very high flows, thus allowing to check whether the model is structurally sound enough or not. The employed physically-based, watershed-scale hydrologic model (PyTOPKAPI) was parameterized with GIS-pre-processing parameters and remote sensing hydro-meteorological variables. The validation with mean annual runoff ratio proposes a decent graphical understanding between observed and the simulated discharge. The Nash-Sutcliffe efficiency and coefficient of determination (R²) values of 0.704 and 0.739 proves strong model efficiency. Given the current climate variability impact, water planner can now assert a tool for flow quantification and sustainable planning purposes.Keywords: catchment characteristics model, GIS, synthetic data, ungauged basin
Procedia PDF Downloads 3283139 Effect of Combining Return Policy and Early Order Commitment on Supply Chain Performance
Authors: Hamed Homaei, Seyed Reza Hejazi, Iraj Mahdavi
Abstract:
Return policy (RP) is a strategy for supply chain coordination, whereby the retailer returns the unsold products to the manufacturer or the manufacturer offers a credit on unsold products to the retailer at the end of selling season. Early order commitment (EOC) is another efficient mechanism for channel coordination wherein the retailer commits to purchasing from the manufacturer a fixed order quantity a few periods in advance of the regular delivery lead time. This paper studies the coordination issue of a two-level supply chain with one retailer and one manufacturer through combining two mentioned contracts. The main purpose of this paper is to present an analytical model to show that how the contract which is created by combining RP and EOC can improve supply chain performance. Numerical analyses show that the supply chain coordination through mentioned contract in compare with EOC mechanism, can improve supply chain performance under certain ranges of model parameters. Furthermore, some numerical analyses are done to determine the best buyback price in order to achieve maximum cost saving in the supply chain. Finally, a revenue sharing scheme is presented in order to achieve a win-win condition in the supply chain.Keywords: supply chain coordination, early order commitment, return policy, revenue sharing
Procedia PDF Downloads 2963138 Microalgae Applied to the Reduction of Biowaste Produced by Fruit Fly Drosophila melanogaster
Authors: Shuang Qiu, Zhipeng Chen, Lingfeng Wang, Shijian Ge
Abstract:
Biowastes are a concern due to the large amounts of commercial food required for model animals during the biomedical research. Searching for sustainable food alternatives with negligible physiological effects on animals is critical to solving or reducing this challenge. Microalgae have been demonstrated as suitable for both human consumption and animal feed in addition to biofuel and bioenergy applications. In this study, the possibility of using Chlorella vulgaris and Senedesmus obliquus as a feed replacement to Drosophila melanogaster, one of the fly models commonly used in biomedical studies, was investigated to assess the fly locomotor activity, motor pattern, lifespan, and body weight. Compared to control, flies fed on 60% or 80% (w/w) microalgae exhibited varied walking performance including travel distance and apparent step size, and flies treated with 40% microalgae had shorter lifespans and decreased body weight. However, the 20% microalgae treatment showed no statistical differences in all parameters tested with respect to the control. When partially including 20% microalgae in the standard food, it can annually reduce the food waste (~ 202 kg) by 22.7 % and save $ 7,200 of the food cost, offering an environmentally superior and cost-effective food alternative without compromising physiological performance.Keywords: animal feed, Chlorella vulgaris, Drosophila melanogaster, food waste, microalgae
Procedia PDF Downloads 1693137 Effect of Pristine Graphene on Developmental Toxicity in Zebrafish (Danio rerio) Embryos: Cardiovascular Defects, Apoptosis, and Globin Expression Analysis
Authors: Manjunatha Bangeppagari, Lee Sang Joon
Abstract:
Recently, graphene-related nanomaterials are receiving fast-increasing attention with augmented applications in various fields. Especially, graphene-related materials have been widely applied to the biomedical field in the past years. In the present study, we evaluated the adverse effects of pristine graphene (pG) in zebrafish (Danio rerio) embryos in various aspects, such as mortality rate, heart rate, hatching rate, cardiotoxicity, cardiovascular defect, cardiac looping, apoptosis, and globin expression. For various trace concentrations of pG (1, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 μg/L), early life-stage parameters were observed at 24, 48, 72, and 96 hpf. As a result, pG induces significant developmental defects including yolk sac edema, pericardial edema, embryonic mortality, delayed hatching, heartbeat, several morphological defects, pericardial toxicity, and bradycardia. Moreover, the exposure to pG was found to be a potential risk factor to the cardiovascular system of zebrafish embryos. However, further study on their properties which vary according to production methods and surface functionalization is essentially required. In addition, the possible risks of pG flakes to aquatic animals, and public health should be evaluated before releasing them to the surrounding environment.Keywords: apoptosis, cardiovascular toxicity, globin expression, pristine graphene, zebrafish embryos
Procedia PDF Downloads 137