Search results for: iron
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 959

Search results for: iron

959 Effect of Iron Contents on Rheological Properties of Syndiotactic Polypropylene/iron Composites

Authors: Naveed Ahmad, Farooq Ahmad, Abdul Aal

Abstract:

The effect of iron contents on the rheological behavior of sPP/iron composites in the melt phase was investigated using a series of syndiotactic polypropylene/iron (sPP/iron) composite samples. Using the Advanced Rheometric Expansion System, studies with small amplitude oscillatory shear were conducted (ARES). It was discovered that the plateau modulus rose along with the iron loading. Also it was found that both entanglement molecular weight and packing length decrease with increase in iron loading.. This finding demonstrates how iron content in polymer/iron composites affects chain parameters and dimensions, which in turn affects the entire chain dynamics.

Keywords: plateau modulus, packing lenght, polymer/iron composites, rheology, entanglement molecular weight

Procedia PDF Downloads 159
958 Influence of Iron Ore Mineralogy on Cluster Formation inside the Shaft Furnace

Authors: M. Bahgat, H. A. Hanafy, S. Lakdawala

Abstract:

Clustering phenomenon of pellets was observed frequently in shaft processes operating at higher temperatures. Clustering is a result of the growth of fibrous iron precipitates (iron whiskers) that become hooked to each other and finally become crystallized during the initial stages of metallization. If the pellet clustering is pronounced, sometimes leads to blocking inside the furnace and forced shutdown takes place. This work clarifies further the relation between metallic iron whisker growth and iron ore mineralogy. Various pellet sizes (6 – 12.0 & +12.0 mm) from three different ores (A, B & C) were (completely and partially) reduced at 985 oC with H2/CO gas mixture using thermos-gravimetric technique. It was found that reducibility increases by decreasing the iron ore pellet’s size. Ore (A) has the highest reducibility than ore (B) and ore (C). Increasing the iron ore pellet’s size leads to increase the probability of metallic iron whisker formation. Ore (A) has the highest tendency for metallic iron whisker formation than ore (B) and ore (C). The reduction reactions for all iron ores A, B and C are mainly controlled by diffusion reaction mechanism.

Keywords: shaft furnace, cluster, metallic iron whisker, mineralogy, ferrous metallurgy

Procedia PDF Downloads 469
957 Investigation of the Fading Time Effects on Microstructure and Mechanical Properties in Vermicular Cast Iron

Authors: Mehmet Ekici

Abstract:

In this study, the fading time affecting the mechanical properties and microstructures of vermicular cast iron were studied. Pig iron and steel scrap weighing about 12 kg were charged into the high-frequency induction furnace crucible and completely melted for production of vermicular cast iron. The slag was skimmed using a common flux. After fading time was set at 1. 3 and 5 minutes. In this way, three vermicular cast iron was produced that same composition but different phase structures. The microstructure of specimens was investigated, and uni-axial tensile test and the Charpy impact test were performed, and their micro-hardness measurements were done in order to characterize the mechanical behaviours of vermicular cast iron.

Keywords: vermicular cast iron, fading time, hardness, tensile test and impact test

Procedia PDF Downloads 347
956 Bioavailability of Iron in Some Selected Fiji Foods using In vitro Technique

Authors: Poonam Singh, Surendra Prasad, William Aalbersberg

Abstract:

Iron the most essential trace element in human nutrition. Its deficiency has serious health consequences and is a major public health threat worldwide. The common deficiencies in Fiji population reported are of Fe, Ca and Zn. It has also been reported that 40% of women in Fiji are iron deficient. Therefore, we have been studying the bioavailability of iron in commonly consumed Fiji foods. To study the bioavailability it is essential to assess the iron contents in raw foods. This paper reports the iron contents and its bioavailability in commonly consumed foods by multicultural population of Fiji. The food samples (rice, breads, wheat flour and breakfast cereals) were analyzed by atomic absorption spectrophotometer for total iron and its bioavailability. The white rice had the lowest total iron 0.10±0.03 mg/100g but had high bioavailability of 160.60±0.03%. The brown rice had 0.20±0.03 mg/100g total iron content but 85.00±0.03% bioavailable. The white and brown breads showed the highest iron bioavailability as 428.30±0.11 and 269.35 ±0.02%, respectively. The Weetabix and the rolled oats had the iron contents 2.89±0.27 and 1.24.±0.03 mg/100g with bioavailability of 14.19±0.04 and 12.10±0.03%, respectively. The most commonly consumed normal wheat flour had 0.65±0.00 mg/100g iron while the whole meal and the Roti flours had 2.35±0.20 and 0.62±0.17 mg/100g iron showing bioavailability of 55.38±0.05, 16.67±0.08 and 12.90±0.00%, respectively. The low bioavailability of iron in certain foods may be due to the presence of phytates/oxalates, processing/storage conditions, cooking method or interaction with other minerals present in the food samples.

Keywords: iron, bioavailability, Fiji foods, in vitro technique, human nutrition

Procedia PDF Downloads 529
955 Removal of Iron (II) from Wastewater in Oil Field Using 3-(P-Methyl) Phenyl-5-Thionyl-1,2,4-Triazoline Assembled on Silver Nanoparticles

Authors: E. M. S. Azzam, S. A. Ahmed, H. H. Mohamed, M. A. Adly, E. A. M. Gad

Abstract:

In this work we prepared 3-(p-methyl) phenyl-5-thionyl-1,2,4-triazoline (C1). The nanostructure of the prepared C1 compound was fabricated by assembling on silver nanoparticles. The UV and TEM analyses confirm the assembling of C1 compound on silver nanoparticles. The effect of C1 compound on the removal of Iron (II) from Iron contaminated samples and industrial wastewater samples (produced water from oil processing facility) were studied before and after their assembling on silver nanoparticles. The removal of Iron was studied at different concentrations of FeSO4 solution (5, 14 and 39 mg/l) and field sample concentration (661 mg/l). In addition, the removal of Iron (II) was investigated at different times. The Prepared compound and its nanostructure with AgNPs show highly efficient in removing the Iron ions. Quantum chemical descriptors using DFT was discussed. The output of the study pronounces that the C1 molecule can act as chelating agent for Iron (II).

Keywords: triazole derivatives, silver nanoparticles, iron (II), oil field

Procedia PDF Downloads 655
954 Synthesis and Characterization of Iron Modified Geopolymer and Its Resistance against Chloride and Sulphate

Authors: Noor-ul-Amin, Lubna Nawab, Sabiha Sultana

Abstract:

Geopolymer with different silica to alumina ratio with iron have been synthesized using sodium silicate, aluminum, and iron salts as a source of silica, alumina and iron source, and sodium/potassium hydroxide as an alkaline medium. The iron source will be taken from iron (III) salts and laterite clay samples. Laterite has been used as a natural source of iron in modified geopolymer. The synthesized iron modified geopolymer was submitted to the different aggressive environment, including chloride and sulphate solutions in different concentration. Different experimental techniques, including XRF, XRD, and FTIR, were used to study the bonding nature and effect of aggressive environment on geopolymer. The major phases formed during geopolymerization are sodalite (Na₄Al₃Si₃O₁₂Cl), albite (NaAlSi₃O₈), hematite (Fe₂O₃), and chabazite as confirmed from the XRD results. The resulting geopolymer showed greater resistance to sulphate and chloride as compared to the normal geopolymer.

Keywords: modified geopolymer, laterite, chloride, sulphate

Procedia PDF Downloads 155
953 Synthesis of Bimetallic Fe/Cu Nanoparticles with Different Copper Loading Ratios

Authors: May Thant Zin, Josephine Borja, Hirofumi Hinode, Winarto Kurniawan

Abstract:

Nanotechnology has multiple and enormous advantages for all application. Therefore, this research is carried out to synthesize and characterize bimetallic iron with copper nano-particles. After synthesizing nano zero valent iron by reduction of ferric chloride by sodium borohydride under nitrogen purging environment, bimetallic iron with copper nanoparticles are synthesized by varying different loads of copper chloride. Due to different standard potential (E0) values of copper and iron, copper is coupled with iron at (Cu to Fe ratio of 1:5, 1:6.7, 1:10, 1:20). It is found that the resulted bimetallic Fe/Cu nanoparticles are composing phases of iron and copper. According to the diffraction patterns indicating the state of chemical combination of the bimetallic nanoparticles, the particles are well-combined and crystalline sizes are less than 1000 Ao (or 100 nm). Specifically, particle sizes of synthesized bimetallic Fe/Cu nanoparticles are ranging from 44.583 nm to 85.149 nm.

Keywords:

Procedia PDF Downloads 443
952 Utilization of Sorghum and White Bean Flour for the Production of Gluten Free and Iron Rich Cookies

Authors: Tahra Elobeid, Emmerich Berghofer

Abstract:

The aim of this study is to find innovative approaches for the production of iron rich foods using natural iron sources. The vehicle used for fortification was sorghum whereas the iron fortificant was white bean. Fortified sorghum cookies were produced from five different mixtures; iron content, iron bioavailability, cookie texture and acceptability were measured. Cookies were prepared from the three fortified flours; 90% sorghum + 10% white bean (S9WB1), 75% sorghum + 25% white bean (S3WB1), 50% sorghum + 50% white bean (S1WB1) and 100% sorghum and 100% white bean. The functional properties gave good results in all the formulations. Statistical analysis of the iron content in the five different cookies showed that there was significant difference at the 95% confidence level (ANOVA). The iron content in all the recipes including the 100% sorghum improved, the increase ranging from 112% in 100% sorghum cookies to 476% in 100% white bean cookies. This shows that the increase in the amount of white bean used for fortification leads to the improvement of the iron content of cookies. The bioavailability of iron ranged from 21.3% in 100% sorghum to 28.6% in 100% white bean cookies. In the 100% sorghum cookies the iron bioavailability increased with reference to raw sorghum due to the addition of eggs. Bioavailability of iron in raw sorghum is 16.2%, therefore the percentage increase ranged from 5.1% to 28.6%. The cookies prepared from 10% white bean (S9WB1) scored the lowest 3.7 in terms of acceptability. They were the least preferred due to their somewhat soft texture. The 30% white bean cookies (S3WB1) gave results comparable to the 50% (S1WB1) and 100% white bean cookies. Cookies prepared with high percentage of white bean (50% and 100% white bean) gave the best results. Therefore cookie formulations from sorghum and white bean are successful in improving the iron status of anaemic individuals.

Keywords: sorghum, white bean, iron content, bioavailable iron, cookies

Procedia PDF Downloads 414
951 Prevalence of Overweight and Obesity in Iron-Deficient Iranian Teenagers Girls

Authors: Eftekhari M. H., Mozaffari-Khosravi H., Shidfar F.

Abstract:

Background: Many Iranian adolescent girls are iron deficient, but it is unclear whether the iron deficiency is associated with other nutritional risk indicators. Objective: we aimed to investigate the association between iron deficiency and weight status (measured as BMI) among a reprehensive sample of teenage girls. Methods: A cross-sectional study was performed in a region of southern I.R.Iran. One hundred eighty-seven iron-deficient participants (aged between 11 to 14) were selected by systematic random sampling among all students in grades 1 to 3 from high schools for girls. We assayed hemoglobin, hematocrit, serum ferritin, iron and total iron binding capacity and measured weight and height. Body mass index was calculated according to age and gender-specific BMI growth charts for children 2 to 20 years of age. Results: 13% were at risk for being overweight and 8.3% were overweight. The severity of iron deficiency increased as BMI increased from normal to at risk for overweight and overweight. Iron deficiency anemia was most prevalent among overweight adolescents than at risk for overweight and normal weight adolescents (28%, 18%, and 13%, respectively). Conclusions: The results of this study showed an inverse association of BMI with serum ferritin. Overweight adolescents demonstrated an increased prevalence of anemia. Because of the potentially harmful effects of iron deficiency, obese adolescents should be routinely screened and treated as necessary.

Keywords: adolescent, over weight, iron deficiency, Iran

Procedia PDF Downloads 139
950 Prevalence and Determinants of Iron Deficiency Anaemia in Pregnant Xhosa Women

Authors: A. Abiodun, G. George, B. Longo-Mbenza, E. Blanco-Blanco

Abstract:

Objective: To determine the prevalence and determinants of iron-deficiency anaemia in pregnant Xhosa women practising geophagia. Methods: This cross-sectional study was conducted among pregnant Xhosa women from rural areas of Mthatha, South Africa, according to socio-demographic, geophagia, haematologic and iron metabolism profiles using univariate and multivariate analyses. Anaemia was defined by haemoglobin <11 g/dL and iron deficiency was defined by serum ferritin < 12 ug/L. Results: Out of 210 pregnant women (mean age =23±5.3 for geophagic and 25.6±5.3 for non-geophagic), 51.4% (n = 108) had iron deficiency anaemia (50.9% geophagic and 49.1% non-geophagic). After adjusting for confounders, only geophagia (OR=2.1 95% CI 1.1-4.2; P=0.029) and mean corpuscular haemoglobin concentration categories (< 30.5 g/dL with OR=16.6 95% CI 6.8-40.2; P < 0.0001; 30.5-31.5 g/dL with OR=2.9 95% CI 1.4-6.1; P=0.006; and ≥ 31.5 g/dL with OR=1) were identified as the most important significant and independent determinants of iron deficiency anaemia. Conclusion: The study results point to the potential harm geophagia can cause in pregnant women. The prevalence of iron deficiency anaemia is unacceptably high. Geophagic behaviour, low MCHC presented as particular risk factors of iron deficiency anaemia in this study. Education and counselling about appropriate diet during pregnancy and prevention of geophagic behaviour (and health consequences) are needed among pregnant Xhosa women.

Keywords: geophagia, pregnancy, iron deficiency anaemia, Xhosa

Procedia PDF Downloads 376
949 Effect of Austenitization Temperature on Wear Behavior of Carbidic Austempered Ductile Iron (CADI)

Authors: Ajay Likhite, Prashant Parhad, D. R. Peshwe, S. U. Pathak

Abstract:

Chromium bearing Austempered Ductile Iron (ADI) has been recently in the news for its improved wear performance over the ADI. The work presented below was taken up to study the effect of different austenitisation temperatures on the microstructure and wear performance of the Carbidic Austempered Ductile Iron (CADI). In this investigation Cr bearing ductile iron was subjected to austempering treatment to obtain an ausferritic microstructure. Two different austenitisation temperatures were selected whereas, the austempering temperature and time was kept unchanged. Microstructure and wear performance of this alloy, austenitized at two different temperatures was studied.

Keywords: austempered ductile iron, carbidic austempered ductile iron, austenitization temperature, wear behavior

Procedia PDF Downloads 438
948 Protein-Thiocyanate Composite as a Sensor for Iron III Cations

Authors: Hosam El-Sayed, Amira Abou El-Kheir, Salwa Mowafi, Marwa Abou Taleb

Abstract:

Two proteinic biopolymers; namely keratin and sericin, were extracted from their respective natural resources by simple appropriate methods. The said proteins were dissolved in the appropriate solvents followed by regeneration in a form of film polyvinyl alcohol. Proteinium thiocyanate (PTC) composite was prepared by reaction of a regenerated film with potassium thiocyanate in acid medium. In another experiment, the said acidified proteins were reacted with potassium thiocyante before dissolution and regeneration in a form of PTC composite. The possibility of using PTC composite for determination of the concentration of iron III ions in domestic as well as industrial water was examined. The concentration of iron III cations in water was determined spectrophotometrically by measuring the intensity of blood red colour of iron III thiocyanate obtained by interaction of PTC with iron III cation in the tested water sample.

Keywords: iron III cations, protein, sensor, thiocyanate, water

Procedia PDF Downloads 428
947 Prevalence of Anemia and Iron Deficiency in Women of Childbearing Age in the North-West of Libya

Authors: Mustafa Ali Abugila, Basma Nuri Kajruba, Hanan Elhadi, Rehab Ramadan Wali

Abstract:

Iron deficiency anemia is characterized by a decrease of Hb (hemoglobin), serum iron, ferritin, and RBC (red blood cells) (shape and size). Also, it is characterized by an increase in total iron binding capacity (TIBC). Red blood cells become microctytic and hypochromic due to a decrease in iron content. This study was conducted in the north west of Libya and included 210 women in childbearing age (18-45 years) who were visiting women clinic. After filling the questionnaire, blood samples were taken and analyzed for hematological and biochemical profiles. Biochemical tests included measurement of serum iron, ferritin, and total iron binding capacity (TIBC). Among the total sample (210 women), there were 87 (41.42%) pregnant and 123 (58.57%) non-pregnant women (includes married and single). Pregnant women (87) were classified according to the gestational age into first, second, and third trimesters. The means of biochemical and hematological parameters in the studied samples were: Hb = 10.37± 2.02 g/dl, RBC = 3.78± 1.037 m/m3, serum iron 61.86± 40.28 µg/dl, and TIBC = 386.01 ± 94.91 µg/dl. In this study, we considered that any women have hemoglobin below 11.5 g/dl is anemic. 89.1%, 69.5%, and 47.8% of pregnant women who belong to third trimester had low (below normal value) Hb, serum iron, and ferritin, i.e. iron deficiency anemia was more common in third trimester among the first and the second trimesters. Third trimester pregnant women also had high TIBC more than first and second trimesters.

Keywords: red blood cells, hemoglobin, total iron binding capacity, ferritin

Procedia PDF Downloads 529
946 Effect of Blast Furnace Iron Slag on the Mechanical Performance of Hot Mix Asphalt (HMA)

Authors: Ayman M. Othman, Hassan Y. Ahmed

Abstract:

This paper discusses the effect of using blast furnace iron slag as a part of fine aggregate on the mechanical performance of hot mix asphalt (HMA). The mechanical performance was evaluated based on various mechanical properties that include; Marshall/stiffness, indirect tensile strength and unconfined compressive strength. The effect of iron slag content on the mechanical properties of the mixtures was also investigated. Four HMA with various iron slag contents, namely; 0%, 5%, 10% and 15% by weight of total mixture were studied. Laboratory testing has revealed an enhancement in the compressive strength of HMA when iron slag was used. Within the tested range of iron slag content, a considerable increase in the compressive strength of the mixtures was observed with the increase of slag content. No significant improvement on Marshall/stiffness and indirect tensile strength of the mixtures was observed when slag was used. Even so, blast furnace iron slag can still be used in asphalt paving for environmental advantages.

Keywords: blast furnace iron slag, compressive strength, HMA, indirect tensile strength, marshall/stiffness, mechanical performance, mechanical properties

Procedia PDF Downloads 437
945 Influence of Pouring Temperature on the Formation of Spheroidal and Lamellar Graphite in Cast Iron

Authors: Mehmet Ekici

Abstract:

The objective of this research is to investigate the effect of pouring temperature on the microstructure of the cast iron. The pattern was designed with 300 mm of width, and the thickness variations are 1.25 mm and poured at five different temperatures; 1300, 1325, 1350, 1375 and 1400°C. Several cast irons, prepared with different chemical compositions and microstructures (three lamellar and three spheroidal structures) have been examined by extensive mechanical testing and optical microscopy. The fluidity of spheroidal and lamellar graphite in cast iron increases with the pouring temperature. The numbers of nodules were decreased by increasing pouring temperature for spheroidal structures. Whereas, the numbers of flakes of lamellar structures changed by both pouring temperature and chemical composition. In general, with increasing pouring temperature, the amount of pearlite in the internal structure of both lamellar and spheroidal graphite cast iron materials were increased.

Keywords: spheroidal graphite cast iron, lamellar graphite in cast iron, pouring temperature, tensile test and impact test

Procedia PDF Downloads 332
944 Iron Extraction from Bog Iron Ore in Early French Colonial America

Authors: Yves Monette, Brad Loewen, Louise Pothier

Abstract:

This study explores the first bog iron ore extraction activities which took place in colonial New France. Archaeological excavations carried on the founding site of Montreal in the last ten years have revealed the remains of Fort Ville-Marie erected in 1642. In a level related to the fort occupation between 1660 and 1680, kilos of scories, a dozen of half-finished iron artefacts and a light yellow clayey ore material have recovered that point to extractive metallurgy activities at the fort. Examples of scories, artefacts and of a possible bog iron ore were submitted to SEM-EDS analysis. The results clearly indicate that iron was extracted from local limonite ores in a bloomery. We discovered that the gangue material could be traced from the ore to the scories. However, some lime silicates and some accessory minerals found in the scories, like barite and celestine for example, were absent from the ore but present in dolomite fragments found in the same archaeological context. The tracing of accessory minerals suggests that the ironmaster introduced a lime flux in the bloomery charge to maximize the separation of the iron ore. Before the introduction of the blast furnace in Western Europe during the first half of the 18th Century, the use of fluxes in iron bloomery was not a common practice.

Keywords: bog iron ore, extractive metallurgy, French colonial America, Montreal, scanning electron microscopy (SEM)

Procedia PDF Downloads 354
943 Synthesis of Nano Iron Copper Core-Shell by Using K-M Reactor

Authors: Mohamed Ahmed AbdelKawy, A. H. El-Shazly

Abstract:

In this study, Nano iron-copper core-shell was synthesized by using Kinetic energy micro reactor ( K-M reactor). The reaction between nano-pure iron with copper sulphate pentahydrate (CuSO4.5H2O) beside NaCMC as a stabilizer at K-M reactor gives many advantages in comparison with the traditional chemical method for production of nano iron-Copper core-shell in batch reactor. Many factors were investigated for its effect on the process performance such as initial concentrations of nano iron and copper sulphate pentahydrate solution. Different techniques were used for investigation and characterization of the produced nano iron particles such as SEM, XRD, UV-Vis, XPS, TEM and PSD. The produced Nano iron-copper core-shell particle using micro mixer showed better characteristics than those produced using batch reactor in different aspects such as homogeneity of the produced particles, particle size distribution and size, as core diameter 10nm particle size were obtained. The results showed that 10 nm core diameter were obtained using Micro mixer as compared to 80 nm core diameter in one-fourth the time required by using traditional batch reactor and high thickness of copper shell and good stability.

Keywords: nano iron, core-shell, reduction reaction, K-M reactor

Procedia PDF Downloads 308
942 Enhanced Iron Accumulation in Chickpea Though Expression of Iron-Regulated Transport and Ferritin Genes

Authors: T. M. L. Hoang, G. Tan, S. D. Bhowmik, B. Williams, A. Johnson, M. R. Karbaschi, Y. Cheng, H. Long, S. G. Mundree

Abstract:

Iron deficiency is a worldwide problem affecting both developed and developing countries. Currently, two major approaches namely iron supplementation and food fortification have been used to combat this issue. These measures, however, are limited by the economic status of the targeted demographics. Iron biofortification through genetic modification to enhance the inherent iron content and bioavailability of crops has been employed recently. Several important crops such as rice, wheat, and banana were reported successfully improved iron content via this method, but there is no known study in legumes. Chickpea (Cicer arietinum) is an important leguminous crop that is widely consumed, particularly in India where iron deficiency anaemia is prevalent. Chickpea is also an ideal pulse in the formulation of complementary food between pulses and cereals to improve micronutrient contents. This project aims at generating enhanced ion accumulation and bioavailability chickpea through the exogenous expression of genes related to iron transport and iron homeostasis in chickpea plants. Iron-Regulated Transport (IRT) and Ferritin genes in combination were transformed into chickpea half-embryonic axis by agrobacterium–mediated transformation. Transgenic independent event was confirmed by Southern Blot analysis. T3 leaves and seeds of transgenic chickpea were assessed for iron contents using LA-ICP-MS (Laser Ablation – Inductively Coupled Plasma Mass Spectrometry) and ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometry). The correlation between transgene expression levels and iron content in T3 plants and seeds was assessed using qPCR. Results show that iron content in transgenic chickpea expressing the above genes significantly increased compared to that in non-transgenic controls.

Keywords: iron biofortification, chickpea, IRT, ferritin, Agrobacterium-mediated transformation, LA-ICP-MS, ICP-OES

Procedia PDF Downloads 440
941 A Comparison of the Adsorption Mechanism of Arsenic on Iron-Modified Nanoclays

Authors: Michael Leo L. Dela Cruz, Khryslyn G. Arano, Eden May B. Dela Pena, Leslie Joy Diaz

Abstract:

Arsenic adsorbents were continuously being researched to ease the detrimental impact of arsenic to human health. A comparative study on the adsorption mechanism of arsenic on iron modified nanoclays was undertaken. Iron intercalated montmorillonite (Fe-MMT) and montmorillonite supported zero-valent iron (ZVI-MMT) were the adsorbents investigated in this study. Fe-MMT was produced through ion-exchange by replacing the sodium intercalated ions in montmorillonite with iron (III) ions. The iron (III) in Fe-MMT was later reduced to zero valent iron producing ZVI-MMT. Adsorption study was performed by batch technique. Obtained data were fitted to intra-particle diffusion, pseudo-first order, and pseudo-second-order models and the Elovich equation to determine the kinetics of adsorption. The adsorption of arsenic on Fe-MMT followed the intra-particle diffusion model with intra-particle rate constant of 0.27 mg/g-min0.5. Arsenic was found to be chemically bound on ZVI-MMT as suggested by the pseudo-second order and Elovich equation. The derived pseudo-second order rate constant was 0.0027 g/mg-min with initial adsorption rate computed from the Elovich equation was 113 mg/g-min.

Keywords: adsorption mechanism, arsenic, montmorillonite, zero valent iron

Procedia PDF Downloads 414
940 Wasteless Solid-Phase Method for Conversion of Iron Ores Contaminated with Silicon and Phosphorus Compounds

Authors: А. V. Panko, Е. V. Ablets, I. G. Kovzun, М. А. Ilyashov

Abstract:

Based upon generalized analysis of modern know-how in the sphere of processing, concentration and purification of iron-ore raw materials (IORM), in particular, the most widespread ferrioxide-silicate materials (FOSM), containing impurities of phosphorus and other elements compounds, noted special role of nano technological initiatives in improvement of such processes. Considered ideas of role of nano particles in processes of FOSM carbonization with subsequent direct reduction of ferric oxides contained in them to metal phase, as well as in processes of alkali treatment and separation of powered iron from phosphorus compounds. Using the obtained results the wasteless solid-phase processing, concentration and purification of IORM and FOSM from compounds of phosphorus, silicon and other impurities excelling known methods of direct iron reduction from iron ores and metallurgical slimes.

Keywords: iron ores, solid-phase reduction, nanoparticles in reduction and purification of iron from silicon and phosphorus, wasteless method of ores processing

Procedia PDF Downloads 484
939 Adsorption of Reactive Dye Using Entrapped nZVI

Authors: P. Gomathi Priya, M. E. Thenmozhi

Abstract:

Iron nanoparticles were used to cleanup effluents. This paper involves synthesis of iron nanoparticles chemically by sodium borohydride reduction of ammonium ferrous sulfate solution (FAS). Iron oxide nanoparticles have lesser efficiency of adsorption than Zero Valent Iron nanoparticles (nZVI). Glucosamine acts as a stabilizing agent and chelating agent to prevent Iron nanoparticles from oxidation. nZVI particles were characterized using Scanning Electron Microscopy (SEM). Thus, the synthesized nZVI was subjected to entrapment in biopolymer, viz. barium (Ba)-alginate beads. The beads were characterized using SEM. Batch dye degradation studies were conducted using Reactive black Water soluble Nontoxic Natural substances (WNN) dye which is one of the most hazardous dyes used in textile industries. Effect of contact time, effect of pH, initial dye concentration, adsorbent dosage, isotherm and kinetic studies were carried out.

Keywords: ammonium ferrous sulfate solution, barium, alginate beads, reactive black WNN dye, zero valent iron nanoparticles

Procedia PDF Downloads 330
938 Microbial Effects of Iron Elution from Hematite into Seawater Mediated via Dissolved Organic Matter

Authors: Apichaya Aneksampant, Xuefei Tu, Masami Fukushima, Mitsuo Yamamoto

Abstract:

The restoration of seaweed beds recovery has been developed using a fertilization technique for supplying dissolved iron to barren coastal areas. The fertilizer is composed of iron oxides as a source of iron and compost as humic substance (HS) source, which can serve as chelator of iron to stabilize the dissolved species under oxic seawater condition. However, elution mechanisms of iron from iron oxide surfaces have not sufficiently elucidated. In particular, roles of microbial activities in the elution of iron from the fertilizer are not sufficiently understood. In the present study, a fertilizer (iron oxide/compost = 1/1, v/v) was incubated in a water tank at Mashike coast, Hokkaido Japan. Microorganisms in the 6-month fertilizer were isolated and identified as Exiguobacterium oxidotolerans sp. (T-2-2). The identified bacteria were inoculated to perform iron elution test in a postgate B medium, prepared in artificial seawater. Hematite was used as a model iron oxide and anthraquinone-2,7-disolfonate (AQDS) as a model for HSs. The elution test performed in presence and absence of bacteria inoculation. ICP-AES was used to analyze total iron and a colorimetric technique using ferrozine employed for the determination of ferrous ion. During the incubation period, sample contained hematite and T-2-2 in both presence and absence of AQDS continuously showed the iron elution and reached at the highest concentration after 9 days of incubation and then slightly decrease to stabilize within 20 days. Comparison to the sample without T-2-2, trace amount of iron was observed, suggesting that iron elution to seawater can be attributed to bacterial activities. The levels of total organic carbon (TOC) in the culture solution with hematite decreased. This may be to the adsorption of organic compound, AQDS, to hematite surfaces. The decrease in UV-vis absorption of AQDS in the culture solution also support the results of TOC that AQDS was adsorbed to hematite surfaces. AQDS can enhance the iron elution, while the adsorption of organic matter suppresses the iron elution from hematite.

Keywords: anthraquinone-2, 7-disolfonate, barren ground, E.oxidotolerans sp., hematite, humic substances, iron elution

Procedia PDF Downloads 379
937 Deficiencies in Vitamin A and Iron Supply Potential of Selected Indigenous Complementary Foods of Infants in Uganda

Authors: Richard Kajjura, Joyce Kikafunda, Roger Whitehead

Abstract:

Introduction: Indigenous complementary recipes for children (6-23 months) are bulky and inextricably linked. The potential contribution of indigenous complementary foods to infant’s vitamin A and iron needs is not well investigated in Uganda. Less is known whether children in Uganda are living with or without adequate supply of vitamin A and iron nutrients. In this study, vitamin A and iron contents were assessed in the complementary foods fed to infants aged 6-11 months in a Peri-urban setting in Kampala District in Central Uganda. Objective: Assessment of vitamin A and iron contents of indigenous complementary foods of children as fed and associated demographic factor. Method: In a cross sectional study design, one hundred and three (153) households with children aged 6-11 months were randomly selected to participate in the assessment. Complementary food samples were collected from the children’s mothers/caretakers at the time of feeding the child. The mothers’ socio-demographic characteristics of age, education, marital status, occupation and sex collected a semi-qualitative questionnaire. The Vitamin A and iron contents in the complementary foods were analyzed using a UV/VIS spectrophotometer for vitamin A and Atomic Absorption spectrophotometer for iron samples. The data was analyzed using Gene-stat software program. Results: The mean vitamin A content was 97.0± 72.5 µg while that of iron was 1.5 ± 0.4 mg per 100g of food sample as fed. The contribution of indigenous complementary foods found was 32% for vitamin A and 15% iron of the recommended dietary allowance. Age of children was found to be significantly associated Vitamin A and Iron supply potential. Conclusion: The contribution of indigenous complementary foods to infant’s vitamin A and iron needs was low. Complementary foods in Uganda are more likely to be deficient in vitamin A and iron content. Nutrient dense dietary supplementation should be intervened in to make possible for Ugandan children attain full growth potential.

Keywords: indigenous complementary food, infant, iron, vitamin A

Procedia PDF Downloads 477
936 Energy Efficient Recycling of In-Plant Fines

Authors: H. Ahmed, A. Persson, L. Sundqvist, B. Biorkman

Abstract:

Numerous amounts of metallurgical dusts and sludge containing iron as well as some other valuable elements such as Zn, Pb and C are annually produced in the steelmaking industry. These alternative iron ore resources (fines) with unsatisfying physical and metallurgical properties are difficult to recycle. However, agglomerating these fines to be further used as a feed stock for existing iron and steel making processes is practiced successfully at several plants but for limited extent. In the present study, briquettes of integrated steelmaking industry waste materials (namely, BF-dust and sludge, BOF-dust and sludge) were used as feed stock to produce direct reduced iron (DRI). Physical and metallurgical properties of produced briquettes were investigated by means of TGA/DTA/QMS in combination with XRD. Swelling, softening and melting behavior were also studied using heating microscope.

Keywords: iron and steel wastes, recycling, self-reducing briquettes, thermogravimetry

Procedia PDF Downloads 396
935 Iron Response Element-mRNA Binding to Iron Response Protein: Metal Ion Sensing

Authors: Mateen A. Khan, Elizabeth J. Theil, Dixie J. Goss

Abstract:

Cellular iron homeostasis is accomplished by the coordinated regulated expression of iron uptake, storage, and export. Iron regulate the translation of ferritin and mitochondrial aconitase iron responsive element (IRE)-mRNA by interaction with an iron regulatory protein (IRPs). Iron increases protein biosynthesis encoded in iron responsive element. The noncoding structure IRE-mRNA, approximately 30-nt, folds into a stem loop to control synthesis of proteins in iron trafficking, cell cycling, and nervous system function. Fluorescence anisotropy measurements showed the presence of one binding site on IRP1 for ferritin and mitochondrial aconitase IRE-mRNA. Scatchard analysis revealed the binding affinity (Kₐ) and average binding sites (n) for ferritin and mitochondrial aconitase IRE-mRNA were 68.7 x 10⁶ M⁻¹ and 9.2 x 10⁶ M⁻¹, respectively. In order to understand the relative importance of equilibrium and stability, we further report the contribution of electrostatic interactions in the overall binding of two IRE-mRNA with IRP1. The fluorescence quenching of IRP1 protein was measured at different ionic strengths. The binding affinity of IRE-mRNA to IRP1 decreases with increasing ionic strength, but the number of binding sites was independent of ionic strength. Such results indicate a differential contribution of electrostatics to the interaction of IRE-mRNA with IRP1, possibly related to helix bending or stem interactions and an overall conformational change. Selective destabilization of ferritin and mitochondrial aconitase RNA/protein complexes as reported here explain in part the quantitative differences in signal response to iron in vivo and indicate possible new regulatory interactions.

Keywords: IRE-mRNA, IRP1, binding, ionic strength

Procedia PDF Downloads 125
934 Acute Hepatotoxicity of Nano and Micro-Sized Iron Particles in Adult Albino Rats

Authors: Ghada Hasabo, Mahmoud Saber Elbasiouny, Mervat Abdelsalam, Sherin Ghaleb, Niveen Eldessouky

Abstract:

In the near future, nanotechnology is envisaged for large scale use. Hence health and safety issues of nanoparticles should be promptly addressed. In the present study the acute hepatoxicity assessment due to high single oral dose of nano iron and micro iron particles were studied. The normal daily activities, biochemical alterations, blood coagulation, histopathological changes in Wister rats were the aspect of the toxicological assessment.This work found that significant alterations in biochemical enzymes (serum iron level, liver enzymes, albumin, and bilirubin levels), blood coagulation (PT, PC, INR), and histopathological changes occurred more prominently in the nano iron particle treated group.

Keywords: nanobiotechnology, nanosystems, nanomaterials, nanotechnology

Procedia PDF Downloads 503
933 An Experimental Study of Iron Smelting Techniques Used in the South East Rajasthan, with Special Reference to Nathara-Ki-Pal, Udaipur

Authors: Udaya Kumar

Abstract:

The aim of this paper is to discuss recent research conducted in experimental studies related to the process of the iron smelting. The paper will discuss issues related to the selection of iron ore, structure of furnace, making of tuyeres, fashioning of blowers and firing temperatures through experiments conducted recently and scientific analyses of experimental work. Experiments were conducted in order to investigate iron smelting techniques used at the Early Historic site of Nathara-Ki-Pal. (73°47’E; 24°16N is located about 70 km south-east of Udaipur city). Geographically, Nathara-Ki-Pal has located the foot hills of Aravalli’s. Iron ore and iron slag can be seen on the surface of the site. The remains of 4 broken furnaces were recovered during excavations (2007 and 2008) and the site was excavated by Prof. Pandey from the Department of Archaeology of the Institute of Rajasthan studies, Rajasthan Vidyapeeth University. This shows that the site of Nathara-Ki-Pal was a center of iron smelting. Results of experiments performed both in the field reconstruction of a bloomery furnace and in the laboratory are discussed.

Keywords: experimental studies, furnace, smelting techniques, making of tuyeres

Procedia PDF Downloads 188
932 Reduction Conditions of Briquetted Solid Wastes Generated by the Integrated Iron and Steel Plant

Authors: Gökhan Polat, Dicle Kocaoğlu Yılmazer, Muhlis Nezihi Sarıdede

Abstract:

Iron oxides are the main input to produce iron in integrated iron and steel plants. During production of iron from iron oxides, some wastes with high iron content occur. These main wastes can be classified as basic oxygen furnace (BOF) sludge, flue dust and rolling scale. Recycling of these wastes has a great importance for both environmental effects and reduction of production costs. In this study, recycling experiments were performed on basic oxygen furnace sludge, flue dust and rolling scale which contain 53.8%, 54.3% and 70.2% iron respectively. These wastes were mixed together with coke as reducer and these mixtures are pressed to obtain cylindrical briquettes. These briquettes were pressed under various compacting forces from 1 ton to 6 tons. Also, both stoichiometric and twice the stoichiometric cokes were added to investigate effect of coke amount on reduction properties of the waste mixtures. Then, these briquettes were reduced at 1000°C and 1100°C during 30, 60, 90, 120 and 150 min in a muffle furnace. According to the results of reduction experiments, the effect of compacting force, temperature and time on reduction ratio of the wastes were determined. It is found that 1 ton compacting force, 150 min reduction time and 1100°C are the optimum conditions to obtain reduction ratio higher than 75%.

Keywords: Coke, iron oxide wastes, recycling, reduction

Procedia PDF Downloads 340
931 The Effects of Therapy on Oxidative Stress, Ghrelin and Nesfatin-1 Levels in Iron Deficiency Anemia

Authors: Emrah Caylak

Abstract:

The aim of this study is to investigate the effect of iron therapy on oxidative stress, ghrelin, and nesfatin-1 levels in patients with iron deficiency anemia (IDA). Thirty patients who applied to Internal Medicine Clinic and were diagnosed with IDA and also 30 healthy individuals as a control were included in the study. The samples were collected from IDA patients before and after treatment. Differences in serum MDA, TAC, and plasma ghrelin, nesfatin-1 were analyzed among the three groups. Serum MDA and TAC levels were found higher and lower in IDA patients before the treatment group compared to the controls (p < 0.05). After the iron therapy, plasma acylated ghrelin and nesfatin-1 levels in IDA patients were found higher in IDA patients before the treatment group and controls (p < 0.05). Plasma ghrelin and nesfatin-1 levels increase with iron treatment in IDA patients. The iron therapy induces the synthesis of ghrelin and nesfatin-1 in human body, thus causes increased appetite and food intake.

Keywords: anemia, oxidative stress, ghrelin, nesfatin-1

Procedia PDF Downloads 144
930 Pollution by Iron of the Quaternary Drinking Water and its Effect on Human Health

Authors: Raafat A. Mandour

Abstract:

Background; Water may be regarded as polluted if it contains substances that render it unsafe for public use. The surface, subsoil waters and the shallow water-bearing geologic formation are more subjected to pollution due to its closeness to the human daily work. Aim of the work; determine the distribution of iron level in drinking water and its relation to iron level in blood patients suffering from liver diseases. Materials and Methods; For the present study, a total number of (71) drinking water samples (surface, wells and tap) have been collected and Blood samples were carried out on (71) selected inhabitants who attended in different hospitals, from different localities and suffering from liver diseases. Serum iron level in these patients was estimated by using IRON-B kit, Biocon company (Germany) and the 1, 10-phenanthroline method. Results; The water samples analyzed for iron are found suitable for drinking except two samples at Mit-Ghamr district showing values higher than the permissible limit of Egyptian Ministry of Health (EMH) and World Health Organization (WHO).The comparison between iron concentrations in drinking water and human blood samples shows a positive relationship. Conclusion; groundwater samples from the polluted areas should have special attention for treatment.

Keywords: water samples, blood samples, EMH, WHO

Procedia PDF Downloads 468