Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22290

Search results for: stability analysis

22290 Modal Analysis of Power System with a Microgrid

Authors: Burak Yildirim, Muhsin Tunay Gençoğlu


A microgrid (MG) is a small power grid composed of localized medium or low level power generation, storage systems, and loads. In this paper, the effects of a MG on power systems voltage stability are shown. The MG model, designed to demonstrate the effects of the MG, was applied to the IEEE 14 bus power system which is widely used in power system stability studies. Eigenvalue and modal analysis methods were used in simulation studies. In the study results, it is seen that MGs affect system voltage stability positively by increasing system voltage instability limit value for buses of a power system in which MG are placed.

Keywords: eigenvalue analysis, microgrid, modal analysis, voltage stability

Procedia PDF Downloads 217
22289 Stability of the Wellhead in the Seabed in One of the Marine Reservoirs of Iran

Authors: Mahdi Aghaei, Saeid Jamshidi, Mastaneh Hajipour


Effective factors on the mechanical wellbore stability are divided in to two categories: 1) Controllable factors, 2) Uncontrollable factors. The purpose of geo-mechanical modeling of wells is to determine the limit of controlled parameters change based on the stress regime at each point and by solving the governing equations the pore-elastic environment around the well. In this research, the mechanical analysis of wellbore stability was carried out for Soroush oilfield. For this purpose, the geo-mechanical model of the field is made using available data. This model provides the necessary parameters for obtaining the distribution of stress around the wellbore. Initially, a basic model was designed to perform various analysis, based on obtained data, using Abaqus software. All of the subsequent sensitivity analysis such as sensitivity analysis on porosity, permeability, etc. was done on the same basic model. The results obtained from these analysis gives various result such as: with the constant geomechanical parameters, and sensitivity analysis on porosity permeability is ineffective. After the most important parameters affecting the wellbore stability and instability are geo-mechanical parameters.

Keywords: wellbore stability, movement, stress, instability

Procedia PDF Downloads 20
22288 Stabilizing a Failed Slope in Islamabad, Pakistan

Authors: Muhammad Umer Zubair, Kamran Akhtar, Muhammad Arsalan Khan


This paper is based on a research carried out on a failed slope in Defence Housing Authority (DHA) Phase I, Islamabad. The research included determination of Soil parameters, Site Surveying and Cost Estimation. Apart from these, the use of three dimensional (3D) slope stability analysis in conjunction with two dimensional (2D) analysis was used determination of slope conditions. In addition collection of soil reports, a detailed survey was carried out to create a 3D model in Surfer 8 software. 2D cross-sections that needed to be analyzed for stability were generated from 3D model. Slope stability softwares, Rocscience Slide 6.0 and Clara-W were employed for 2D and 3D Analyses respectively which have the ability to solve complex mathematical functions. Results of the analyses were used to confirm site conditions and the threats were identified to recommend suitable remedies.The most effective remedy was suggested for slope stability after analyzing all remedies in software Slide 6 and its feasibility was determined through cost benefit analysis. This paper should be helpful to Geotechnical engineers, design engineers and the organizations working with slope stability.

Keywords: slope stability, Rocscience, Clara W., 2d analysis, 3D analysis, sensitivity analysis

Procedia PDF Downloads 411
22287 The Effect of Microgrid on Power System Oscillatory Stability

Authors: Burak Yildirim, Muhsin Tunay Gencoglu


This publication shows the effects of Microgrid (MG) integration on the power systems oscillating stability. Generated MG model power systems were applied to the IEEE 14 bus test system which is widely used in stability studies. Stability studies were carried out with the help of eigenvalue analysis over linearized system models. In addition, Hopf bifurcation point detection was performed to show the effect of MGs on the system loadability margin. In the study results, it is seen that MGs affect system stability positively by increasing system loadability margin and has a damper effect on the critical modes of the system and the electromechanical local modes, but they make the damping amount of the electromechanical interarea modes reduce.

Keywords: Eigenvalue analysis, microgrid, Hopf bifurcation, oscillatory stability

Procedia PDF Downloads 152
22286 Features of Rail Strength Analysis in Conditions of Increased Force Loading

Authors: G. Guramishvili, M. Moistsrapishvili, L. Andghuladze


In the article are considered the problems arising at increasing of transferring from rolling stock axles on rail loading from 210 KN up to 270 KN and is offered for rail strength analysis definition of rail force loading complex integral characteristic with taking into account all affecting force factors that is characterizing specific operation condition of rail structure and defines the working capability of structure. As result of analysis due mentioned method is obtained that in the conditions of 270 KN loading the rail meets the working assessment criteria of rail and rail structures: Strength, rail track stability, rail links stability and its transverse stability, traffic safety condition that is rather important for post-Soviet countries railways.

Keywords: axial loading, rail force loading, rail structure, rail strength analysis, rail track stability

Procedia PDF Downloads 305
22285 Stability Analysis of Rabies Model with Vaccination Effect and Culling in Dogs

Authors: Eti Dwi Wiraningsih, Folashade Agusto, Lina Aryati, Syamsuddin Toaha, Suzanne Lenhart, Widodo, Willy Govaerts


This paper considers a deterministic model for the transmission dynamics of rabies virus in the wild dogs-domestic dogs-human zoonotic cycle. The effect of vaccination and culling in dogs is considered on the model, then the stability was analysed to get basic reproduction number. We use the next generation matrix method and Routh-Hurwitz test to analyze the stability of the Disease-Free Equilibrium and Endemic Equilibrium of this model.

Keywords: stability analysis, rabies model, vaccination effect, culling in dogs

Procedia PDF Downloads 425
22284 Flow and Heat Transfer over a Shrinking Sheet: A Stability Analysis

Authors: Anuar Ishak


The characteristics of fluid flow and heat transfer over a permeable shrinking sheet is studied. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. Numerical results show that dual solutions are possible for a certain range of the suction parameter. A stability analysis is performed to determine which solution is linearly stable and physically realizable.

Keywords: dual solutions, heat transfer, shrinking sheet, stability analysis

Procedia PDF Downloads 284
22283 Aerodynamic Design an UAV and Stability Analysis with Method of Genetic Algorithm Optimization

Authors: Saul A. Torres Z., Eduardo Liceaga C., Alfredo Arias M.


We seek to develop a UAV for agricultural spraying at a maximum altitude of 5000 meters above sea level, with a payload of 100 liters of fumigant. For the developing the aerodynamic design of the aircraft is using computational tools such as the "Vortex Lattice Athena" software, "MATLAB", "ANSYS FLUENT", "XFoil" package among others. Also methods are being used structured programming, exhaustive analysis of optimization methods and search. The results have a very low margin of error, and the multi-objective problems can be helpful for future developments. Also we developed method for Stability Analysis (Lateral-Directional and Longitudinal).

Keywords: aerodynamics design, optimization, algorithm genetic, multi-objective problem, longitudinal stability, lateral-directional stability

Procedia PDF Downloads 475
22282 Landfill Design for Reclamation of Şırnak Coal Mine Dumps: Shalefill Stability and Risk Assessment

Authors: Yıldırım I. Tosun, Halim Cevizci, Hakan Ceylan


By GEO5 FEM program with four rockfill slope modeling and stability analysis was performed for S1, S2, S3 and S4 slopes where landslides of the shalefills were limited. Effective angle of internal friction (φ'°) 17°-22.5°, the effective cohesion (c') from 0.5 to 1.8 kPa, saturated unit weight 1.78-2.43 g/cm3, natural unit weight 1.9-2.35 g/cm3, dry unit weight 1.97-2.40 g/cm3, the permeability coefficient of 1x10-4 - 6.5x10-4 cm/s. In cross-sections of the slope, GEO 5 FEM program possible critical surface tension was examined. Rockfill dump design was made to prevent sliding slopes. Bulk material designated geotechnical properties using also GEO5 programs FEM and stability program via a safety factor determined and calculated according to the values S3 and S4 No. slopes are stable S1 and S2 No. slopes were close to stable state that has been found to be risk. GEO5 programs with limestone rock fill dump through FEM program was found to exhibit stability.

Keywords: slope stability, stability analysis, rockfills, sock stability

Procedia PDF Downloads 356
22281 Power Flow and Modal Analysis of a Power System Including Unified Power Flow Controller

Authors: Djilani Kobibi Youcef Islam, Hadjeri Samir, Djehaf Mohamed Abdeldjalil


The Flexible AC Transmission System (FACTS) technology is a new advanced solution that increases the reliability and provides more flexibility, controllability, and stability of a power system. The Unified Power Flow Controller (UPFC), as the most versatile FACTS device for regulating power flow, is able to control respectively transmission line real power, reactive power, and node voltage. The main purpose of this paper is to analyze the effect of the UPFC on the load flow, the power losses, and the voltage stability using NEPLAN software modules, Newton-Raphson load flow is used for the power flow analysis and the modal analysis is used for the study of the voltage stability. The simulation was carried out on the IEEE 14-bus test system.

Keywords: FACTS, load flow, modal analysis, UPFC, voltage stability

Procedia PDF Downloads 355
22280 An Innovative Non-Invasive Method To Improve The Stability Of Orthodontic Implants: A Pilot Study

Authors: Dr., Suchita Daokar


Background: Successful orthodontic treatment has always relied on anchorage. The stability of the implants depends on bone quantity, mini-implant design, and placement conditions. Out of the various methods of gaining stability, Platelet concentrations are gaining popularity for various reasons. PRF is a minimally invasive method, and there are various studies that has shown its role in enhancing the stability of general implants. However, there is no literature found regarding the effect of PRF in enhancing the stability of the orthodontic implant. Therefore, this study aimed to evaluate and assess the efficacy of PRF on the stability of the orthodontic implant. Methods: The study comprised of 9 subjects aged above 18 years of age. The split mouth technique was used; Group A (where implants were coated before insertion) and group B (implant were normally inserted). The stability of the implant was measured using resonance frequency analysis at insertion (T0), 24 hours (T1), 2 weeks (T2), at 4 weeks (T3), at 6 weeks (T4), and 8 weeks (T5) after insertion. Result: Statistically significant findings were found when group A was compared to group B using ANOVA test (p<0.05). The stability of the implant of group A at each time interval was greater than group B. The implant stability was high at T0 and reduces at T2, and increasing through T3 to T5. The stability was highest at T5. Conclusion: A chairside, minimally invasive procedure ofPRF coating on implants have shown promising results in improving the stability of orthodontic implants and providing scope for future studies.

Keywords: Orthodontic implants, stablity, resonance Frequency Analysis, pre

Procedia PDF Downloads 18
22279 Stability Analysis of Three-Lobe Journal Bearing Lubricated with a Micropolar Fluids

Authors: Boualem Chetti


The dynamic characteristics of a three-lobe journal bearing lubricated with micropolar fluids are determined by the linear stability theory. Lubricating oil containing additives and contaminants is modeled as micropolar fluid. The modified Reynolds equation is obtained using the micropolar lubrication theory and the finite difference technique has been used to solve it. The dynamic characteristics in terms of stiffness, damping coefficients, the critical mass and whirl ratio are determined for various values of size of material characteristic length and the coupling number. The computed results show compared with Newtonian fluids, that micropolar fluid exhibits better stability.

Keywords: three-lobe bearings, micropolar fluid, dynamic characteristics, stability analysis

Procedia PDF Downloads 191
22278 Slope Stability Assessment of Himalayan Slope under Static and Seismic Conditions

Authors: P. Singh, S. Mittal


Stability of slope in Chamoli Distt. near River Alaknanda in Uttarakhand is essential to safeguard the infrastructure of the slope where a dam is proposed to be built near this slope. Every year the areas near the slope have been facing severe landslides (small or big) due to intensive precipitation inflicting substantial damages as per Geological Survey of India records. The stability analysis of the slope under static and pseudo static conditions are presented in this study by using FEM software PHASE2. As per the earthquake zonation map of India, the slope is found in zone V, and hence, pseudo static stability of slope has been performed considering pseudo static analysis. For analysing the slope Mohr-Coulomb shear strength criteria is adopted for soil material and self-drilling anchors are modelled as bolts with parameters like modulus of elasticity, diameter of anchors and peak pull-out resistance of the anchors with the soil present there. The slope is found to be unstable under pseudo static conditions with computed factor of safety= 0.93. Stability is provided to the slope by using Self Drilling Anchors (SDA) which gives factor of safety= 1.15 under pseudo static condition.

Keywords: FEM, pseudo static, self-drilling anchors, slope stability

Procedia PDF Downloads 122
22277 Further Analysis of Global Robust Stability of Neural Networks with Multiple Time Delays

Authors: Sabri Arik


In this paper, we study the global asymptotic robust stability of delayed neural networks with norm-bounded uncertainties. By employing the Lyapunov stability theory and Homeomorphic mapping theorem, we derive some new types of sufficient conditions ensuring the existence, uniqueness and global asymptotic stability of the equilibrium point for the class of neural networks with discrete time delays under parameter uncertainties and with respect to continuous and slopebounded activation functions. An important aspect of our results is their low computational complexity as the reported results can be verified by checking some properties symmetric matrices associated with the uncertainty sets of network parameters. The obtained results are shown to be generalization of some of the previously published corresponding results. Some comparative numerical examples are also constructed to compare our results with some closely related existing literature results.

Keywords: neural networks, delayed systems, lyapunov functionals, stability analysis

Procedia PDF Downloads 393
22276 Application of Artificial Neural Network in Assessing Fill Slope Stability

Authors: An-Jui. Li, Kelvin Lim, Chien-Kuo Chiu, Benson Hsiung


This paper details the utilization of artificial intelligence (AI) in the field of slope stability whereby quick and convenient solutions can be obtained using the developed tool. The AI tool used in this study is the artificial neural network (ANN), while the slope stability analysis methods are the finite element limit analysis methods. The developed tool allows for the prompt prediction of the safety factors of fill slopes and their corresponding probability of failure (depending on the degree of variation of the soil parameters), which can give the practicing engineer a reasonable basis in their decision making. In fact, the successful use of the Extreme Learning Machine (ELM) algorithm shows that slope stability analysis is no longer confined to the conventional methods of modeling, which at times may be tedious and repetitive during the preliminary design stage where the focus is more on cost saving options rather than detailed design. Therefore, similar ANN-based tools can be further developed to assist engineers in this aspect.

Keywords: landslide, limit analysis, artificial neural network, soil properties

Procedia PDF Downloads 126
22275 Study of Stability of a Slope by the Soil Nailed Technique

Authors: Abdelhak Soudani


Using the limit equilibrium method in geotechnical field is very important for large projects. This work contributes to the understanding and analysis of the building unstable slopes by the technique of soil nailed with the used of software called GEO-SLOPE calculation based on limit equilibrium method. To achieve our objective, we began a review of the literature on landslides, and techniques of slope stability. Then, we presented a real case slope likely to slip through the realization of the EastWest Highway (M5 stretch between Khemis Miliana and Hoceinia). We also process the application of reinforcement technique nailed soil. The analysis is followed by a parametric study, which shows the impact of parameters given or chosen on various outcomes. Another method of reinforcement (use of micro-piles) has been suggested for improving the stability of the slope

Keywords: slope stability, strengthening, slip, soil nail, GEO-SLOPE

Procedia PDF Downloads 344
22274 Dual Solutions in Mixed Convection Boundary Layer Flow: A Stability Analysis

Authors: Anuar Ishak


The mixed convection stagnation point flow toward a vertical plate is investigated. The external flow impinges normal to the heated plate and the surface temperature is assumed to vary linearly with the distance from the stagnation point. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. Numerical results show that dual solutions are possible for a certain range of the mixed convection parameter. A stability analysis is performed to determine which solution is linearly stable and physically realizable.

Keywords: dual solutions, heat transfer, mixed convection, stability analysis

Procedia PDF Downloads 285
22273 Geomechanical Technologies for Assessing Three-Dimensional Stability of Underground Excavations Utilizing Remote-Sensing, Finite Element Analysis, and Scientific Visualization

Authors: Kwang Chun, John Kemeny


Light detection and ranging (LiDAR) has been a prevalent remote-sensing technology applied in the geological fields due to its high precision and ease of use. One of the major applications is to use the detailed geometrical information of underground structures as a basis for the generation of a three-dimensional numerical model that can be used in a geotechnical stability analysis such as FEM or DEM. To date, however, straightforward techniques in reconstructing the numerical model from the scanned data of the underground structures have not been well established or tested. In this paper, we propose a comprehensive approach integrating all the various processes, from LiDAR scanning to finite element numerical analysis. The study focuses on converting LiDAR 3D point clouds of geologic structures containing complex surface geometries into a finite element model. This methodology has been applied to Kartchner Caverns in Arizona, where detailed underground and surface point clouds can be used for the analysis of underground stability. Numerical simulations were performed using the finite element code Abaqus and presented by 3D computing visualization solution, ParaView. The results are useful in studying the stability of all types of underground excavations including underground mining and tunneling.

Keywords: finite element analysis, LiDAR, remote-sensing, scientific visualization, underground stability

Procedia PDF Downloads 36
22272 Study of the Stability of the Slope Open-Pit Mines: Case of the Mine of Phosphates – Tebessa, Algeria

Authors: Mohamed Fredj, Abdallah Hafsaoui, Radouane Nakache


The study of the stability of the mining works in rock masses fractured is the major concern of the operating engineer. For geotechnical works in mines and quarries, it there is not today's general methodology for analysis and the quantification of the risks relating to the dangers inherent in these concrete types (falling boulders, landslides, etc.). The reasons for this are uncertainty, which weighs on available data or lack of knowledge of the values of the parameters required for this analysis type. Stability calculations must be based on reliable knowledge of the distribution of discontinuities that dissect the Rocky massif and the resistance to shear of the intact rock and discontinuities. This study is aimed to study the stability of slope of mine (Kef Sennoun - Tebessa, Algeria). The problem is analyzed using a numerical model based on the finite elements (software Plaxis 3D).

Keywords: stability, discontinuities, finite elements, rock mass, open-pit mine

Procedia PDF Downloads 208
22271 A Case Study on Re-Assessment Study of an Earthfill Dam at Latamber, Pakistan

Authors: Afnan Ahmad, Shahid Ali, Mujahid Khan


This research presents the parametric study of an existing earth fill dam located at Latamber, Karak city, Pakistan. The study consists of carrying out seepage analysis, slope stability analysis, and Earthquake analysis of the dam for the existing dam geometry and do the same for modified geometry. Dams are massive as well as expensive hydraulic structure, therefore it needs proper attention. Additionally, this dam falls under zone 2B region of Pakistan, which is an earthquake-prone area and where ground accelerations range from 0.16g to 0.24g peak. So it should be deal with great care, as the failure of any dam can cause irreparable losses. Similarly, seepage as well as slope failure can also cause damages which can lead to failure of the dam. Therefore, keeping in view of the importance of dam construction and associated costs, our main focus is to carry out parametric study of newly constructed dam. GeoStudio software is used for this analysis in the study in which Seep/W is used for seepage analysis, Slope/w is used for Slope stability analysis and Quake/w is used for earthquake analysis. Based on the geometrical, hydrological and geotechnical data, Seepage and slope stability analysis of different proposed geometries of the dam are carried out along with the Seismic analysis. A rigorous analysis was carried out in 2-D limit equilibrium using finite element analysis. The seismic study began with the static analysis, continuing by the dynamic response analysis. The seismic analyses permitted evaluation of the overall patterns of the Latamber dam behavior in terms of displacements, stress, strain, and acceleration fields. Similarly, the seepage analysis allows evaluation of seepage through the foundation and embankment of the dam, while slope stability analysis estimates the factor of safety of the upstream and downstream of the dam. The results of the analysis demonstrate that among multiple geometries, Latamber dam is secure against seepage piping failure and slope stability (upstream and downstream) failure. Moreover, the dam is safe against any dynamic loading and no liquefaction has been observed while changing its geometry in permissible limits.

Keywords: earth-fill dam, finite element, liquefaction, seepage analysis

Procedia PDF Downloads 43
22270 The Comparison of the Reliability Margin Measure for the Different Concepts in the Slope Analysis

Authors: Filip Dodigovic, Kreso Ivandic, Damir Stuhec, S. Strelec


The general difference analysis between the former and new design concepts in geotechnical engineering is carried out. The application of new regulations results in the need for real adaptation of the computation principles of limit states, i.e. by providing a uniform way of analyzing engineering tasks. Generally, it is not possible to unambiguously match the limit state verification procedure with those in the construction engineering. The reasons are the inability to fully consistency of the common probabilistic basis of the analysis, and the fundamental effect of material properties on the value of actions and the influence of actions on resistance. Consequently, it is not possible to apply separate factorization with partial coefficients, as in construction engineering. For the slope stability analysis design procedures problems in the light of the use of limit states in relation to the concept of allowable stresses is detailed in. The quantifications of the safety margins in the slope stability analysis for both approaches is done. When analyzing the stability of the slope, by the strict application of the adopted forms from the new regulations for significant external temporary and/or seismic actions, the equivalent margin of safety is increased. The consequence is the emergence of more conservative solutions.

Keywords: allowable pressure, Eurocode 7, limit states, slope stability

Procedia PDF Downloads 226
22269 Sediment Patterns from Fluid-Bed Interactions: A Direct Numerical Simulations Study on Fluvial Turbulent Flows

Authors: Nadim Zgheib, Sivaramakrishnan Balachandar


We present results on the initial formation of ripples from an initially flattened erodible bed. We use direct numerical simulations (DNS) of turbulent open channel flow over a fixed sinusoidal bed coupled with hydrodynamic stability analysis. We use the direct forcing immersed boundary method to account for the presence of the sediment bed. The resolved flow provides the bed shear stress and consequently the sediment transport rate, which is needed in the stability analysis of the Exner equation. The approach is different from traditional linear stability analysis in the sense that the phase lag between the bed topology, and the sediment flux is obtained from the DNS. We ran 11 simulations at a fixed shear Reynolds number of 180, but for different sediment bed wavelengths. The analysis allows us to sweep a large range of physical and modelling parameters to predict their effects on linear growth. The Froude number appears to be the critical controlling parameter in the early linear development of ripples, in contrast with the dominant role of particle Reynolds number during the equilibrium stage.

Keywords: direct numerical simulation, immersed boundary method, sediment-bed interactions, turbulent multiphase flow, linear stability analysis

Procedia PDF Downloads 45
22268 A Survey on Routh-Hurwitz Stability Criterion

Authors: Mojtaba Hakimi-Moghaddam


Routh-Hurwitz stability criterion is a powerful approach to determine stability of linear time invariant systems. On the other hand, applying this criterion to characteristic equation of a system, whose stability or marginal stability can be determined. Although the command roots (.) of MATLAB software can be easily used to determine the roots of a polynomial, the characteristic equation of closed loop system usually includes parameters, so software cannot handle it; however, Routh-Hurwitz stability criterion results the region of parameter changes where the stability is guaranteed. Moreover, this criterion has been extended to characterize the stability of interval polynomials as well as fractional-order polynomials. Furthermore, it can help us to design stable and minimum-phase controllers. In this paper, theory and application of this criterion will be reviewed. Also, several illustrative examples are given.

Keywords: Hurwitz polynomials, Routh-Hurwitz stability criterion, continued fraction expansion, pure imaginary roots

Procedia PDF Downloads 133
22267 Assessment of Slope Stability by Continuum and Discontinuum Methods

Authors: Taleb Hosni Abderrahmane, Berga Abdelmadjid


The development of numerical analysis and its application to geomechanics problems have provided geotechnical engineers with extremely powerful tools. One of the most important problems in geotechnical engineering is the slope stability assessment. It is a very difficult task due to several aspects such the nature of the problem, experimental consideration, monitoring, controlling, and assessment. The main objective of this paper is to perform a comparative numerical study between the following methods: The Limit Equilibrium (LEM), Finite Element (FEM), Limit Analysis (LAM) and Distinct Element (DEM). The comparison is conducted in terms of the safety factors and the critical slip surfaces. Through the results, we see the feasibility to analyse slope stability by many methods.

Keywords: comparison, factor of safety, geomechanics, numerical methods, slope analysis, slip surfaces

Procedia PDF Downloads 408
22266 Stagnation-Point Flow towards a Stretching/Shrinking Sheet in a Nanofluid: A Stability Analysis

Authors: Anuar Ishak


The characteristics of stagnation point flow of a nanofluid towards a stretching/shrinking sheet are investigated. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. The numerical results show that dual (upper and lower branch) solutions exist for the shrinking case, while for the stretching case, the solution is unique. A stability analysis is performed to determine the stability of the dual solutions. It is found that the skin friction decreases when the sheet is stretched, but increases when the suction effect is increased. It is also found that increasing the thermophoresis parameter reduces the heat transfer rate at the surface, while increasing the Brownian motion parameter increases the mass transfer rate at the surface.

Keywords: dual solutions, heat transfer, forced convection, nanofluid, stability analysis

Procedia PDF Downloads 317
22265 Global Stability Analysis of a Coupled Model for Healthy and Cancerous Cells Dynamics in Acute Myeloid Leukemia

Authors: Abdelhafid Zenati, Mohamed Tadjine


The mathematical formulation of biomedical problems is an important phase to understand and predict the dynamic of the controlled population. In this paper we perform a stability analysis of a coupled model for healthy and cancerous cells dynamics in Acute Myeloid Leukemia, this represents our first aim. Second, we illustrate the effect of the interconnection between healthy and cancer cells. The PDE-based model is transformed to a nonlinear distributed state space model (delay system). For an equilibrium point of interest, necessary and sufficient conditions of global asymptotic stability are given. Thus, we came up to give necessary and sufficient conditions of global asymptotic stability of the origin and the healthy situation and control of the dynamics of normal hematopoietic stem cells and cancerous during myelode Acute leukemia. Simulation studies are given to illustrate the developed results.

Keywords: distributed delay, global stability, modelling, nonlinear models, PDE, state space

Procedia PDF Downloads 174
22264 Magneto-Solutal Convection in Newtonian Fluid Layer with Modulated Gravity

Authors: Om Prakash Keshri, Anand Kumar, Vinod K. Gupta


In the present study, the effect of gravity modulation on the onset of convection in viscous fluid layer under the influence of induced magnetic field, salted from above on the boundaries, has been investigated. Linear and nonlinear stability analysis has been performed. A linear stability analysis is performed to show that the gravity modulation can significantly affect the stability limits of the system. A method based on small amplitude of the modulation is used to compute the critical value of Rayleigh number and wave number. The effect of Smith number, salute Rayleigh number and magnetic Prandtl number on the stability of the system is investigated.

Keywords: viscous fluid, induced magnetic field, gravity modulation, salute convection

Procedia PDF Downloads 57
22263 Core Stability Index for Healthy Young Sri Lankan Population

Authors: V. M. B. K. T. Malwanage, S. Samita


Core stability is one of the major determinants that contribute to preventing injuries, enhance performance, and improve quality of life of the human. Endurance of the four major muscle groups of the central ‘core’ of the human body is identified as the most reliable determinant of core stability amongst the other numerous causes which contribute to readily make one’s core stability. This study aimed to develop a ‘Core Stability Index’ to confer a single value for an individual’s core stability based on the four endurance test scores. Since it is possible that at least some of the test scores are not independent, possibility of constructing a single index using the multivariate method exploratory factor analysis was investigated in the study. The study sample was consisted of 400 healthy young individuals with the mean age of 23.74 ± 1.51 years and mean BMI (Body Mass Index) of 21.1 ± 4.18. The correlation analysis revealed highly significant (P < 0.0001) correlations between test scores and thus construction an index using these highly inter related test scores using the technique factor analysis was justified. The mean values of all test scores were significantly different between males and females (P < 0.0001), and therefore two separate core stability indices were constructed for the two gender groups. Moreover, having eigen values 3.103 and 2.305 for males and females respectively, indicated one factor exists for all four test scores and thus a single factor based index was constructed. The 95% reference intervals constructed using the index scores were -1.64 to 2.00 and -1.56 to 2.29 for males and females respectively. These intervals can effectively be used to diagnose those who need improvement in core stability. The practitioners should find that with a single value measure, they could be more consistent among themselves.

Keywords: construction of indices, endurance test scores, muscle endurance, quality of life

Procedia PDF Downloads 22
22262 Voltage Stability Assessment and Enhancement Using STATCOM -A Case Study

Authors: Puneet Chawla, Balwinder Singh


Recently, increased attention has been devoted to the voltage instability phenomenon in power systems. Many techniques have been proposed in the literature for evaluating and predicting voltage stability using steady state analysis methods. In this paper, P-V and Q-V curves have been generated for a 57 bus Patiala Rajpura circle of India. The power-flow program is developed in MATLAB using Newton-Raphson method. Using Q-V curves, the weakest bus of the power system and the maximum reactive power change permissible on that bus is calculated. STATCOMs are placed on the weakest bus to improve the voltage and hence voltage stability and also the power transmission capability of the line.

Keywords: voltage stability, reactive power, power flow, weakest bus, STATCOM

Procedia PDF Downloads 372
22261 Stability of Power System with High Penetration of Wind Energy: A Comprehensive Review

Authors: Jignesh Patel, Satish K. Joshi


This paper presents the literature review on the works done so far in the area of stability of power system with high penetration of Wind Power with other conventional power sources. Out of many problems, the voltage and frequency stability is of prime concern as it is directly related with the stable operation of power system. In this paper, different aspects of stability of power system, particularly voltage and frequency, Optimization of FACTS-Energy Storage devices is discussed.

Keywords: small singal stability, voltage stability, frequency stability, LVRT, wind power, FACTS

Procedia PDF Downloads 326