Search results for: computer- supported collaborative learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11324

Search results for: computer- supported collaborative learning

6254 From Climate Crisis to Gender-Based Violence: Understanding the Links in Rural Malawi

Authors: Ulemu Kylar Maseko

Abstract:

Climate change has disproportionately impacted Southern Africa, exacerbating vulnerabilities and inequalities, particularly among women who face unique exposure to climate shocks. This study investigates the intricate relationship between climate change impacts and gender-based violence (GBV) in rural areas of Malawi, focusing on how increasing climate shocks such as prolonged droughts, devastating floods, and dwindling natural resources create additional burdens for women and girls. Using a mixed-methods approach that includes surveys and in-depth interviews in climate-affected districts, the findings reveal that climate-induced hardships, including food insecurity and lack of access to clean water, often force women into precarious situations to secure basic needs, thereby heightening their risk to violence. Additionally, heightened tensions within households during extreme weather events correlate with increased incidences of domestic violence as economic pressures mount and conflicts over scarce resources intensify. This study underscores the urgent need for gender-sensitive climate adaptation policies that address GBV risks and advocate for integrated support systems prioritizing the safety and well-being of women. Additionally, it emphasizes the importance of collaborative efforts among governments, NGOs, and communities to develop holistic strategies that safeguard women's rights and promote gender equality in climate action initiatives.

Keywords: climate change, gender-based violence, Malawi, vulnerability, adaptation

Procedia PDF Downloads 8
6253 Open-Source YOLO CV For Detection of Dust on Solar PV Surface

Authors: Jeewan Rai, Kinzang, Yeshi Jigme Choden

Abstract:

Accumulation of dust on solar panels impacts the overall efficiency and the amount of energy they produce. While various techniques exist for detecting dust to schedule cleaning, many of these methods use MATLAB image processing tools and other licensed software, which can be financially burdensome. This study will investigate the efficiency of a free open-source computer vision library using the YOLO algorithm. The proposed approach has been tested on images of solar panels with varying dust levels through an experiment setup. The experimental findings illustrated the effectiveness of using the YOLO-based image classification method and the overall dust detection approach with an accuracy of 90% in distinguishing between clean and dusty panels. This open-source solution provides a cost effective and accessible alternative to commercial image processing tools, offering solutions for optimizing solar panel maintenance and enhancing energy production.

Keywords: YOLO, openCV, dust detection, solar panels, computer vision, image processing

Procedia PDF Downloads 40
6252 Online Formative Assessment Challenges Experienced by Grade 10 Physical Sciences Teachers during Remote Teaching and Learning

Authors: Celeste Labuschagne, Sam Ramaila, Thasmai Dhurumraj

Abstract:

Although formative assessment is acknowledged as crucial for teachers to gauge students’ understanding of subject content, applying formative assessment in an online context is more challenging than in a traditional Physical Sciences classroom. This study examines challenges experienced by Grade 10 Physical Sciences teachers when enacting online formative assessment. The empirical investigation adopted a generic qualitative design and involved three purposively selected Grade 10 Physical Sciences teachers from three different schools and quintiles within the Tshwane North District in South Africa. Data were collected through individual and focus group interviews. Technological, pedagogical, and content knowledge (TPACK) was utilised as a theoretical framework underpinning the study. The study identified a myriad of challenges experienced by Grade 10 Physical Sciences teachers when enacting online formative assessment. These challenges include the utilisation of Annual Teaching Plans, lack of technological knowledge, and internet connectivity. The Department of Basic Education faces the key imperative to provide continuous teacher professional development and concomitant online learning materials that can facilitate meaningful enactment of online formative assessment in various educational settings.

Keywords: COVID-19, challenges, online formative assessment, physical sciences, TPACK

Procedia PDF Downloads 70
6251 Implementing a Plurilingual Approach to ELF in Primary School: An International Comparative Study

Authors: A. Chabert

Abstract:

The present paper is motivated by the current influence of communicative approaches in language policies around the globe (especially through the Common European Framework of Reference), along with the exponential spread of English as a Lingua Franca worldwide. This study focuses on English language learning and teaching in the last year of primary education in Spain (in the bilingual Valencian region), Norway (in the Trondelag region), and China (in the Hunan region) and proposes a plurilingual communicative approach to ELT in line with ELF awareness and the current retheorisation of ELF within multilingualism (Jenkins, 2018). This study, interdisciplinary in nature, attempts to find a convergence point among English Language Teaching, English as a Lingua Franca, Language Ecology and Multilingualism, breaking with the boundaries that separate languages in language teaching and acknowledging English as international communication, while protecting the mother tongue and language diversity within multilingualism. Our experiment included over 400 students across Spain, Norway, and China, and the outcomes obtained demonstrate that despite the different factors involved in different cultures and contexts, a plurilingual approach to English learning improved English scores by 20% in each of the contexts. Through our study, we reflect on the underestimated value of the mother tongue in ELT, as well as the need for a sustainable ELF perspective in education worldwide.

Keywords: English as a Lingua Franca, English language teaching, language ecology, multilingualism

Procedia PDF Downloads 136
6250 Blockchain-Resilient Framework for Cloud-Based Network Devices within the Architecture of Self-Driving Cars

Authors: Mirza Mujtaba Baig

Abstract:

Artificial Intelligence (AI) is evolving rapidly, and one of the areas in which this field has influenced is automation. The automobile, healthcare, education, and robotic industries deploy AI technologies constantly, and the automation of tasks is beneficial to allow time for knowledge-based tasks and also introduce convenience to everyday human endeavors. The paper reviews the challenges faced with the current implementations of autonomous self-driving cars by exploring the machine learning, robotics, and artificial intelligence techniques employed for the development of this innovation. The controversy surrounding the development and deployment of autonomous machines, e.g., vehicles, begs the need for the exploration of the configuration of the programming modules. This paper seeks to add to the body of knowledge of research assisting researchers in decreasing the inconsistencies in current programming modules. Blockchain is a technology of which applications are mostly found within the domains of financial, pharmaceutical, manufacturing, and artificial intelligence. The registering of events in a secured manner as well as applying external algorithms required for the data analytics are especially helpful for integrating, adapting, maintaining, and extending to new domains, especially predictive analytics applications.

Keywords: artificial intelligence, automation, big data, self-driving cars, machine learning, neural networking algorithm, blockchain, business intelligence

Procedia PDF Downloads 123
6249 Generalized π-Armendariz Authentication Cryptosystem

Authors: Areej M. Abduldaim, Nadia M. G. Al-Saidi

Abstract:

Algebra is one of the important fields of mathematics. It concerns with the study and manipulation of mathematical symbols. It also concerns with the study of abstractions such as groups, rings, and fields. Due to the development of these abstractions, it is extended to consider other structures, such as vectors, matrices, and polynomials, which are non-numerical objects. Computer algebra is the implementation of algebraic methods as algorithms and computer programs. Recently, many algebraic cryptosystem protocols are based on non-commutative algebraic structures, such as authentication, key exchange, and encryption-decryption processes are adopted. Cryptography is the science that aimed at sending the information through public channels in such a way that only an authorized recipient can read it. Ring theory is the most attractive category of algebra in the area of cryptography. In this paper, we employ the algebraic structure called skew -Armendariz rings to design a neoteric algorithm for zero knowledge proof. The proposed protocol is established and illustrated through numerical example, and its soundness and completeness are proved.

Keywords: cryptosystem, identification, skew π-Armendariz rings, skew polynomial rings, zero knowledge protocol

Procedia PDF Downloads 223
6248 A Holistic Conceptual Measurement Framework for Assessing the Effectiveness and Viability of an Academic Program

Authors: Munir Majdalawieh, Adam Marks

Abstract:

In today’s very competitive higher education industry (HEI), HEIs are faced with the primary concern of developing, deploying, and sustaining high quality academic programs. Today, the HEI has well-established accreditation systems endorsed by a country’s legislation and institutions. The accreditation system is an educational pathway focused on the criteria and processes for evaluating educational programs. Although many aspects of the accreditation process highlight both the past and the present (prove), the “program review” assessment is "forward-looking assessment" (improve) and thus transforms the process into a continuing assessment activity rather than a periodic event. The purpose of this study is to propose a conceptual measurement framework for program review to be used by HEIs to undertake a robust and targeted approach to proactively and continuously review their academic programs to evaluate its practicality and effectiveness as well as to improve the education of the students. The proposed framework consists of two main components: program review principles and the program review measurement matrix.

Keywords: academic program, program review principles, curriculum development, accreditation, evaluation, assessment, review measurement matrix, program review process, information technologies supporting learning, learning/teaching methodologies and assessment

Procedia PDF Downloads 242
6247 Peer-Assisted Learning of Ebm in, a UK Medical School: Evaluation of the NICE Evidence Search Student Champion Scheme

Authors: Emily Jin, Harry Sharples, Anne Weist

Abstract:

Introduction: NICE Evidence Search Student Champion Scheme is a peer-assisted learning scheme that aims to improve the routine use of evidence-based information by future health and social care staff. The focus is on the NICE evidence search portal that provides selected information from more than 800 reliable health, social care, and medicines sources, including up-to-date guidelines and information for the public. This paper aims to evaluate the effectiveness of the scheme when implemented in Liverpool School of Medicine and to understand the experiences of those attending. Methods: Twelve student champions were recruited and trained in February 2020 as peer tutors during a workshop facilitated by NICE. Cascade sessions were then organised and delivered on an optional basis for students, in small groups of < 10 to approximately 70 attendees. Surveys were acquired immediately before and 8-12 weeks after cascade sessions (n=47 and 45 respectively). Data from these surveys facilitated the analysis of the scheme. Results: Surveys demonstrated 74% of all attendees frequently searched for health and social care information online as a part of their studies. However, only 15% of attendees reported having prior formal training on searching for health information, despite receiving such training earlier on in the curriculum. After attending cascade sessions, students reported a 58% increase in confidence when searching for information using evidence search, from a pre-session a baseline of 36%. Conclusion: NICE Evidence Search Student Champion Scheme provided clear benefits for attending students, increasing confidence in searching for peer-reviewed, mainly secondary sources of health information. The lack of reported training represents the unmet need that the champion scheme satisfies, and this likely benefits student champions as well as attendees. Increasing confidence in searching for healthcare information online may support future evidence-based decision-making.

Keywords: evidence-based medicine, NICE, medical education, medical school, peer-assisted learning

Procedia PDF Downloads 136
6246 Newly-Rediscovered Manuscripts Talking about Seventeenth-Century French Harpsichord Pedagogy

Authors: David Chung

Abstract:

The development of seventeenth-century French harpsichord music is enigmatic in several respects. Although little is known about the formation of this style before 1650 (we have names of composers, but no surviving music), the style has attained a high degree of refinement and sophistication in the music of the earliest known masters (e.g. Chambonnières, Louis Couperin and D’Anglebert). In fact, how the seventeenth-century musicians acquired the skills of their art remains largely steeped in mystery, as the earliest major treatise on French keyboard pedagogy was not published until 1702 by Saint Lambert. This study fills this lacuna by surveying some twenty recently-rediscovered manuscripts, which offer ample materials for revisiting key issues pertaining to seventeenth-century harpsichord pedagogy. By analyzing the musical contents, the verbal information and explicit notation (such as written-out ornaments and rhythmic effects), this study provides a rich picture of the process of learning at the time, with engaging details of performance nuances often lacking in tutors and treatises. Of even greater significance, that creative skills (such as continuo and ornamentation) were taught alongside fundamental knowledge (solfèges, note values, etc.) at the earliest stage of learning offers fresh challenge for modern pedagogues to rethink how harpsichord pedagogy can be revamped to cater for our own pedagogical and aesthetic needs.

Keywords: French, harpsichord, pedagogy, seventeenth century

Procedia PDF Downloads 261
6245 Inclusive Practices in Health Sciences: Equity Proofing Higher Education Programs

Authors: Mitzi S. Brammer

Abstract:

Given that the cultural make-up of programs of study in institutions of higher learning is becoming increasingly diverse, much has been written about cultural diversity from a university-level perspective. However, there are little data in the way of specific programs and how they address inclusive practices when teaching and working with marginalized populations. This research study aimed to discover baseline knowledge and attitudes of health sciences faculty, instructional staff, and students related to inclusive teaching/learning and interactions. Quantitative data were collected via an anonymous online survey (one designed for students and another designed for faculty/instructional staff) using a web-based program called Qualtrics. Quantitative data were analyzed amongst the faculty/instructional staff and students, respectively, using descriptive and comparative statistics (t-tests). Additionally, some participants voluntarily engaged in a focus group discussion in which qualitative data were collected around these same variables. Collecting qualitative data to triangulate the quantitative data added trustworthiness to the overall data. The research team analyzed collected data and compared identified categories and trends, comparing those data between faculty/staff and students, and reported results as well as implications for future study and professional practice.

Keywords: inclusion, higher education, pedagogy, equity, diversity

Procedia PDF Downloads 69
6244 Experiences and Views of Foundation Phase Teachers When Teaching English First Additional Language in Rural Schools

Authors: Rendani Mercy Makhwathana

Abstract:

This paper intends to explore the experiences and views of Foundation Phase teachers when teaching English First Additional Language in rural public schools. Teachers all over the world are pillars of any education system. Consequently, any education transformation should start with teachers as critical role players in the education system. As a result, teachers’ experiences and views are worth consideration, for they impact on learners learning and the wellbeing of education in general. An exploratory qualitative approach with the use of phenomenological research design was used in this paper. The population for this paper comprised all Foundation Phase teachers in the district. Purposive sampling technique was used to select a sample of 15 Foundation Phase teachers from five rural-based schools. Data was collected through classroom observation and individual face-to-face interviews. Data were categorised, analysed and interpreted. The findings revealed that from time-to-time teachers experiences one or more challenging situations, learners’ low participation in the classroom to lack of resources. This paper recommends that teachers should be provided with relevant resources and support to effectively teach English First Additional Language.

Keywords: the education system, first additional language, foundation phase, intermediate phase, language of learning and teaching, medium of instruction, teacher professional development

Procedia PDF Downloads 98
6243 The Impact of Steel Connections on the Fire Resistance of Composite Buildings

Authors: Shuyuan Lin, Zhaohui Huang, Mizi Fan

Abstract:

In the majority of previous research into modelling large scale composite floor subjected to fire, the beam-to-column and beam-to-beam connections were assumed to behave either as pinned or rigid for simplicity, and the vertical shear and axial tension failures of the connection were not taken into account. We have recently developed robust two-noded connection models for modeling endplate and partial endplate steel connections under fire conditions. The main objective of this research is to systematically investigate the impact of the connections of protected beams, on the tensile membrane actions of supported floor slabs in which the failures of the connections, such as, axial tension, vertical shear and bending are accounted for. The models developed have very good numerical stability under a static solver condition, and can be used for large scale modelling of composite buildings in fire.

Keywords: fire, steel structure, component-based model, beam-to-column connections

Procedia PDF Downloads 451
6242 Impact of Heavy Metal Toxicity on Metabolic Changes in the Diazotrophic Cyanobacterium Anabaena PCC 7120

Authors: Rishi Saxena

Abstract:

Cyanobacteria is a photosynthetic prokaryote, and these obtain their energy through photosynthesis. In this paper, we studied the effect of iron on metabolic changes in the diazotrophic cyanobacterium Anabaena PCC 7120. Nowadays, metal contamination due to natural and anthropogenic sources is a global environment concern. Iron induced changes in growth, N2-fixation, CO2 fixation and photosynthetic activity were studied in a diazotrophic cyanobacterium Anabaena PCC 7120. Iron at 50 uM concentration supported the maximum growth, heterocyst frequency, CO2 fixation, photosystem I (PS I), photosystem II (PS II) and nitrogenase activities in the organism. Higher concentration of iron inhibited these processes. Chl a and PS II activities were more sensitive to iron than the protein and PS I activity. Here, it is also mentioned that heavy metal induced altered macromolecules metabolism and changes in the central dogma of life (DNA→ mRNA → Protein). And also recent advances have been made in understanding heavy metal-cyanobacteria interaction and their application for metal detoxification.

Keywords: cyanobacterium anabaena 7120, nitrogen fixation, photosystem I (PS I), photosystem II (PS II)

Procedia PDF Downloads 142
6241 The Effects of Consistently Reading Whole Novels on the Reading Comprehension of Adolescents with Developmental Disabilities

Authors: Pierre Brocas, Konstantinos Rizos

Abstract:

This study was conducted to test the effects of introducing a consistent pace and volume of reading whole narratives on adolescents' reading comprehension with a diagnosis of autism spectrum disorder (ASD). The study was inspired by previous studies conducted on poorer adolescent readers in English schools. The setting was a Free Special Education Needs school in England. Nine male and one female student, between 11-13 years old, across two classrooms participated in the study. All students had a diagnosis of ASD, and all were classified as advanced learners. The classroom teachers introduced reading a whole challenging novel in 12 weeks with consistency as the independent variable. The study used a before-and-after design of testing the participants’ reading comprehension using standardised tests. The participants made a remarkable 1.8 years’ mean progress on the standardised tests of reading comprehension, with three participants making 4+ years progress. The researchers hypothesise that reading novels aloud and at a fast pace in each lesson, that are challenging but appropriate to the participants’ learning level, may have a beneficial effect on the reading comprehension of adolescents with learning difficulties, giving them a more engaged uninterrupted reading experience over a sustained period. However, more studies need to be conducted to test the independent variable across a bigger and more diverse population with a stronger design.

Keywords: autism, reading comprehension, developmental disabilities, narratives

Procedia PDF Downloads 203
6240 Wearable Antenna for Diagnosis of Parkinson’s Disease Using a Deep Learning Pipeline on Accelerated Hardware

Authors: Subham Ghosh, Banani Basu, Marami Das

Abstract:

Background: The development of compact, low-power antenna sensors has resulted in hardware restructuring, allowing for wireless ubiquitous sensing. The antenna sensors can create wireless body-area networks (WBAN) by linking various wireless nodes across the human body. WBAN and IoT applications, such as remote health and fitness monitoring and rehabilitation, are becoming increasingly important. In particular, Parkinson’s disease (PD), a common neurodegenerative disorder, presents clinical features that can be easily misdiagnosed. As a mobility disease, it may greatly benefit from the antenna’s nearfield approach with a variety of activities that can use WBAN and IoT technologies to increase diagnosis accuracy and patient monitoring. Methodology: This study investigates the feasibility of leveraging a single patch antenna mounted (using cloth) on the wrist dorsal to differentiate actual Parkinson's disease (PD) from false PD using a small hardware platform. The semi-flexible antenna operates at the 2.4 GHz ISM band and collects reflection coefficient (Γ) data from patients performing five exercises designed for the classification of PD and other disorders such as essential tremor (ET) or those physiological disorders caused by anxiety or stress. The obtained data is normalized and converted into 2-D representations using the Gabor wavelet transform (GWT). Data augmentation is then used to expand the dataset size. A lightweight deep-learning (DL) model is developed to run on the GPU-enabled NVIDIA Jetson Nano platform. The DL model processes the 2-D images for feature extraction and classification. Findings: The DL model was trained and tested on both the original and augmented datasets, thus doubling the dataset size. To ensure robustness, a 5-fold stratified cross-validation (5-FSCV) method was used. The proposed framework, utilizing a DL model with 1.356 million parameters on the NVIDIA Jetson Nano, achieved optimal performance in terms of accuracy of 88.64%, F1-score of 88.54, and recall of 90.46%, with a latency of 33 seconds per epoch.

Keywords: antenna, deep-learning, GPU-hardware, Parkinson’s disease

Procedia PDF Downloads 16
6239 Through Seligman’s Lenses: Creating a Culture of Well-Being in Higher-Education

Authors: Neeru Deep, Kimberly McAlister

Abstract:

Mental health issues have been increasing worldwide for many decades, but the COVID-19 pandemic has brought mental health issues into the spotlight. Within higher education, promoting the well-being of students has dramatically increased in focus. The Northwestern State University of Louisiana opened the Center for Positivity, Well-being, and Hope using the action research process of reflecting, planning, acting, and observing. The study’s purpose is two-fold: First, it highlights how to create a collaborative team to reflect, plan, and act to develop a well-being culture in higher education institutions. Second, it investigates the efficacy of the center through Seligman’s lenses. The researchers shared their experience in the first three phases of the action research process and then applied an identical concurrent mixed methods design. A purposive sample evaluated the efficacy of the center through Seligman’s lenses. The researcher administered PERMA-Profiler Measure, the PERMA-Profiler Measure overview, the CoPWH Evaluation I, and the CoPWH Evaluation II questionnaires to collect qualitative and quantitative data. The thematic analysis for qualitative and descriptive statistics for quantitative data concluded that the center creates a well-being culture and promotes well-being in college students. In conclusion, this action research shares the successful implementation of the cyclic process of research in promoting a well-being culture in higher education with the implications for promoting a well-being culture in various educational settings, workplaces, and communities.

Keywords: action research, mixed methods research design, Seligman, well-being.

Procedia PDF Downloads 134
6238 Early Childhood Teacher Turnover in an Early Head Start Setting: A Qualitative Examination

Authors: Jennifer Sturgeon

Abstract:

Stable relationships provide a predictable and trusting environment and are essential for early development, but high teacher turnover rates in childcare settings make it challenging for infants and toddlers to form stable relationships with their teachers. This can have an adverse effect on development and learning. The qualitative study discussed in this article draws from the experiences of early Head Start teachers and administrators to describe both the impact of teacher turnover and the motivational factors that contribute to teacher retention. A case study approach was used and included classroom observations, a review of exit interviews, and perceptions from focus groups of early Head Start staff in an urban early Head Start childcare center. Emerging from the case study was the discovery that teacher turnover has an impact on the social-emotional development of toddlers, particularly in self-regulation. Additional key findings that emerged include teacher turnover leading to negative effects on learning, a decrease in preschool preparation, and increased chaos in the classroom and center. Motivational factors that contributed to teacher retention included positive leadership, the mission to make a difference, and fair compensation.

Keywords: early childhood, teacher turnover, continuity of care, early head start

Procedia PDF Downloads 73
6237 Embedded Visual Perception for Autonomous Agricultural Machines Using Lightweight Convolutional Neural Networks

Authors: René A. Sørensen, Søren Skovsen, Peter Christiansen, Henrik Karstoft

Abstract:

Autonomous agricultural machines act in stochastic surroundings and therefore, must be able to perceive the surroundings in real time. This perception can be achieved using image sensors combined with advanced machine learning, in particular Deep Learning. Deep convolutional neural networks excel in labeling and perceiving color images and since the cost of high-quality RGB-cameras is low, the hardware cost of good perception depends heavily on memory and computation power. This paper investigates the possibility of designing lightweight convolutional neural networks for semantic segmentation (pixel wise classification) with reduced hardware requirements, to allow for embedded usage in autonomous agricultural machines. Using compression techniques, a lightweight convolutional neural network is designed to perform real-time semantic segmentation on an embedded platform. The network is trained on two large datasets, ImageNet and Pascal Context, to recognize up to 400 individual classes. The 400 classes are remapped into agricultural superclasses (e.g. human, animal, sky, road, field, shelterbelt and obstacle) and the ability to provide accurate real-time perception of agricultural surroundings is studied. The network is applied to the case of autonomous grass mowing using the NVIDIA Tegra X1 embedded platform. Feeding case-specific images to the network results in a fully segmented map of the superclasses in the image. As the network is still being designed and optimized, only a qualitative analysis of the method is complete at the abstract submission deadline. Proceeding this deadline, the finalized design is quantitatively evaluated on 20 annotated grass mowing images. Lightweight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show competitive performance with regards to accuracy and speed. It is feasible to provide cost-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.

Keywords: autonomous agricultural machines, deep learning, safety, visual perception

Procedia PDF Downloads 401
6236 Empowering Tomorrow's Educators: A Transformative Journey through Education for Sustainable Development

Authors: Helga Mayr

Abstract:

In our ongoing effort to address urgent global challenges related to sustainability, higher education institutions play a central role in raising a generation of informed and empowered citizens committed to sustainable development. This paper presents the preliminary results of the so far realized evaluation of a compulsory module on education for sustainable development (ESD) offered to students in the bachelor's program in elementary education at the University College of Teacher Education Tyrol (PH Tirol), Austria. The module includes a lecture on sustainability and education as well as a project-based seminar that aims to foster a deep understanding of ESD and its application in pedagogical practice. The study examines various dimensions related to the module's impact on participating students, focusing on prevalent sustainability concepts, intentions, actions, general and sustainability-related self-efficacy, perceived competence related to ESD, and ESD-related self-efficacy. In addition, the research addresses assessment of the learning process. To obtain a comprehensive overview of the effectiveness of the module, a mixed methods approach was/is used in the evaluation. Quantitative data was/is collected through surveys and self-assessment instruments, while qualitative findings were/will be obtained through focus group interviews and reflective analysis. The PH Tirol is collaborating with another University College of Teacher Education (Styria) and a university of applied sciences in Switzerland (UAS of the Grisons) to broaden the scope of the analysis and allow for comparative findings. Preliminary results indicate that students have a relatively rudimentary understanding of sustainability. The extent to which completion of the module influences understanding of sustainability, awareness, intentions, and actions, as well as self-efficacy, is currently under investigation. The results will be available at the time of the conference and will be presented there. In terms of learning, the project-based seminar, which promotes hands-on engagement with ESD, was evaluated for its effectiveness in fostering key sustainability competencies as well as sustainability-related and ESD-related self-efficacy. The research not only provides insights into the effectiveness of the compulsory module ESD at the PH Tirol but also contributes to the broader discourse on integrating ESD into teacher education.

Keywords: education for sustainable development, teacher education, project-based learning, effectiveness measurements

Procedia PDF Downloads 76
6235 Task-Based Teaching for Developing Communication Skills in Second Language Learners

Authors: Geeta Goyal

Abstract:

Teaching-learning of English as a second language is a challenge for the learner as well as the teacher. Whereas a student may find it hard and get demotivated while communicating in a language other than mother tongue, a teacher, too, finds it difficult to integrate necessary teaching material in lesson plans to maximize the outcome. Studies reveal that task-based teaching can be useful in diverse contexts in a second language classroom as it helps in creating opportunities for language exposure as per learners' interest and capability levels, which boosts their confidence and learning efficiency. The present study has analysed the impact of various activities carried out in a heterogenous group of second language learners at tertiary level in a semi-urban area in Haryana state of India. Language tasks were specifically planned with a focus on engaging groups of twenty-five students for a period of three weeks. These included language games such as spell-well, cross-naught besides other communicative and interactive tasks like mock-interviews, role plays, sharing experiences, storytelling, simulations, scene-enact, video-clipping, etc. Tools in form of handouts and cue cards were also used as per requirement. This experiment was conducted for ten groups of students taking bachelor’s courses in different streams of humanities, commerce, and sciences. Participants were continuously supervised, monitored, and guided by the respective teacher. Feedback was collected from the students through classroom observations, interviews, and questionnaires. Students' responses revealed that they felt comfortable and got plenty of opportunities to communicate freely without being afraid of making mistakes. It was observed that even slow/timid/shy learners got involved by getting an experience of English language usage in friendly environment. Moreover, it helped the teacher in establishing a trusting relationship with students and encouraged them to do the same with their classmates. The analysis of the data revealed that majority of students demonstrated improvement in their interest and enthusiasm in the class. The study revealed that task-based teaching was an effective method to improve the teaching-learning process under the given conditions.

Keywords: communication skills, English, second language, task-based teaching

Procedia PDF Downloads 92
6234 Use and Appreciation of a Type of Mathematics Textbook for Secondary Education

Authors: Verónica Díaz Quezada

Abstract:

Despite the wide variety of educational resources on the market and the advances produced in the technological field, the practice of teaching continues to be supported mainly by textbooks. This article reports on descriptive research with qualitative methodology carried out on secondary school mathematics teachers in a region of Chile, in order to describe the use and the indicators of appreciation that teachers have on the textbooks distributed by the official body to public educational establishments. Data were collected through an open response opinion questionnaire. According to the results, among the texts available for the annual performance of their teaching work, the expository and technological books predominate, to the detriment of comprehensive books. The exhibition structure favors master expositions and repetitive exercises, while, with the technological structure, a productive exercise is attempted, proposing numerous applications with the intention of giving meaning to the different mathematical rules and procedures. In relation to the indicators of appreciation that teachers have regarding the use of mathematics textbooks, the suitability and quality of the teaching resources are verified as the most satisfying characteristic.

Keywords: mathematics, secondary school, teachers, textbooks

Procedia PDF Downloads 170
6233 Artificial Intelligence for Traffic Signal Control and Data Collection

Authors: Reggie Chandra

Abstract:

Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.

Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal

Procedia PDF Downloads 175
6232 Investigating the Critical Drivers of Behavior: The Case of Online Taxi Services

Authors: Rosa Hendijani, Mohammadhesam Hajighasemi

Abstract:

As of late, the sharing economy has become an important type of business model. Online taxi services are one example that has grown rapidly around the world. This study examines the factors influencing the use of online taxis as one form of IT-enabled sharing services based on the theory of planned behavior (TPB). Based on the theory of planned behavior, these factors can be divided into three categories, including the ones related to attitude (e.g., image and perceived usefulness), normative believes (e.g., subjective norms), and behavioral control (e.g., technology facilitating conditions and self-efficacy). Three other factors were also considered based on the literature, including perceived economic benefits, openness towards using shared services, and perceived availability. The effect of all these variables was tested both directly and indirectly through intention as the mediating variable. A survey method was used to test the research hypotheses. In total, 361 individuals partook in the study. The results of a multiple regression analysis on behavior showed that perceived economic benefits, compatibility, and subjective norms were important factors influencing behavior among online taxi users. In addition, intention partially mediated the effect of perceived economic benefits and compatibility on behavior. It can be concluded that perceived economic benefits, compatibility, and subjective norms are the three main factors that influence behavior among online taxi users.

Keywords: collaborative consumption, IT-enabled sharing services model, online taxi, sharing economy, theory of planned behavior

Procedia PDF Downloads 140
6231 How Teachers Comprehend and Support Children's Needs to Be Scientists

Authors: Anita Yus

Abstract:

Several Elementary Schools (SD) ‘favored’ by parents, especially those live in big cities in Indonesia, implicitly demand each child enrolled in the first grade of SD to be able to read, write and calculate. This condition urges the parents to push the teachers in PAUD (Kindergarten) to train their children to read, write, and calculate so they have a set of knowledge. According to Piaget, each child is capable of acquiring knowledge when he is given the opportunity to interact with his environment (things, people, and atmosphere). Teachers can make the interaction occur. There are several learning approaches suitable for the characteristics and needs of child’s growth. This paper talks about a research result conducted to investigate how twelve teachers of early childhood program comprehend the constructivist theory of Piaget, and how they inquire, how the children acquire and construct a number of knowledge through occurred interactions. This is a qualitative research with an observation method followed up by a focus group discussion (FGD). The research result shows that there is a reciprocal interaction between the behaviors of teachers and children affected by the size of the classroom and learning source, teaching experiences, education background, teachers’ attitude and motivation, as well as the way the teachers interpret and support the children’s needs. The teachers involved in this research came up with varied perspective on how knowledge acquired by children at first and how they construct it. This research brings a new perspective in understanding children as scientists.

Keywords: constructivist approach, young children as a scientist, teacher practice, teacher education

Procedia PDF Downloads 252
6230 Nanoparticle Supported, Magnetically Separable Metalloporphyrin as an Efficient Retrievable Heterogeneous Nanocatalyst in Oxidation Reactions

Authors: Anahita Mortazavi Manesh, Mojtaba Bagherzadeh

Abstract:

Metalloporphyrins are well known to mimic the activity of monooxygenase enzymes. In this regard, metalloporphyrin complexes have been largely employed as valuable biomimetic catalysts, owing to the critical roles they play in oxygen transfer processes in catalytic oxidation reactions. Investigating in this area is based on different strategies to design selective, stable and high turnover catalytic systems. Immobilization of expensive metalloporphyrin catalysts onto supports appears to be a good way to improve their stability, selectivity and the catalytic performance because of the support environment and other advantages with respect to recovery, reuse. In other words, supporting metalloporphyrins provides a physical separation of active sites, thus minimizing catalyst self-destruction and dimerization of unhindered metalloporphyrins. Furthermore, heterogeneous catalytic oxidations have become an important target since their process are used in industry, helping to minimize the problems of industrial waste treatment. Hence, the immobilization of these biomimetic catalysts is much desired. An attractive approach is the preparation of the heterogeneous catalyst involves immobilization of complexes on silica coated magnetic nano-particles. Fe3O4@SiO2 magnetic nanoparticles have been studied extensively due to their superparamagnetism property, large surface area to volume ratio and easy functionalization. Using heterogenized homogeneous catalysts is an attractive option to facile separation of catalyst, simplified product work-up and continuity of catalytic system. Homogeneous catalysts immobilized on magnetic nanoparticles (MNPs) surface occupy a unique position due to combining the advantages of both homogeneous and heterogeneous catalysts. In addition, superparamagnetic nature of MNPs enable very simple separation of the immobilized catalysts from the reaction mixture using an external magnet. In the present work, an efficient heterogeneous catalyst was prepared by immobilizing manganese porphyrin on functionalized magnetic nanoparticles through the amino propyl linkage. The prepared catalyst was characterized by elemental analysis, FT-IR spectroscopy, X-ray powder diffraction, atomic absorption spectroscopy, UV-Vis spectroscopy, and scanning electron microscopy. Application of immobilized metalloporphyrin in the oxidation of various organic substrates was explored using Gas chromatographic (GC) analyses. The results showed that the supported Mn-porphyrin catalyst (Fe3O4@SiO2-NH2@MnPor) is an efficient and reusable catalyst in oxidation reactions. Our catalytic system exhibits high catalytic activity in terms of turnover number (TON) and reaction conditions. Leaching and recycling experiments revealed that nanocatalyst can be recovered several times without loss of activity and magnetic properties. The most important advantage of this heterogenized catalytic system is the simplicity of the catalyst separation in which the catalyst can be separated from the reaction mixture by applying a magnet. Furthermore, the separation and reuse of the magnetic Fe3O4 nanoparticles were very effective and economical.

Keywords: Fe3O4 nanoparticle, immobilized metalloporphyrin, magnetically separable nanocatalyst, oxidation reactions

Procedia PDF Downloads 302
6229 Dependence of Dielectric Properties on Sintering Conditions of Lead Free KNN Ceramics Modified With Li-Sb

Authors: Roopam Gaur, K. Chandramani Singh, Radhapiyari Laishram

Abstract:

In order to produce lead free piezoceramics with optimum piezoelectric and dielectric properties, KNN modified with Li+ (as an A site dopant) and Sb5+ (as a B site dopant) (K0.49Na0.49Li0.02) (Nb0.96Sb0.04) O3 (referred as KNLNS in this paper) have been synthesized using solid state reaction method and conventional sintering technique. The ceramics were sintered in the narrow range of 10500C-10900C for 2-3 hours to get precise information about sintering parameters. Detailed study of dependence of microstructural, dielectric and piezoelectric properties on sintering conditions was then carried out. The study suggests that the volatility of the highly hygroscopic KNN ceramics is not only sensitive to sintering temperatures but also to sintering durations. By merely reducing the sintering duration for a given sintering temperature we saw an increase in the density of the samples which was supported by the increase in dielectric constants of the ceramics. And since density directly or indirectly affects almost all the associated properties, other dielectric and piezoelectric properties were also enhanced as we approached towards the most suitable sintering temperature and duration combination.

Keywords: piezoelectric, dielectric, Li, Sb, KNN, conventional sintering

Procedia PDF Downloads 444
6228 Marketing and Business Intelligence and Their Impact on Products and Services Through Understanding Based on Experiential Knowledge of Customers in Telecommunications Companies

Authors: Ali R. Alshawawreh, Francisco Liébana-Cabanillas, Francisco J. Blanco-Encomienda

Abstract:

Collaboration between marketing and business intelligence (BI) is crucial in today's ever-evolving business landscape. These two domains play pivotal roles in molding customers' experiential knowledge. Marketing insights offer valuable information regarding customer needs, preferences, and behaviors. Conversely, BI facilitates data-driven decision-making, leading to heightened operational efficiency, product quality, and customer satisfaction. Customer experiential knowledge (CEK) encompasses customers' implicit comprehension of consumption experiences influenced by diverse factors, including social and cultural influences. This study primarily focuses on telecommunications companies in Jordan, scrutinizing how experiential customer knowledge mediates the relationship between marketing intelligence and business intelligence. Drawing on theoretical frameworks such as the resource-based view (RBV) and service-dominant logic (SDL), the research aims to comprehend how organizations utilize their resources, particularly knowledge, to foster Evolution. Employing a quantitative research approach, the study collected and analyzed primary data to explore hypotheses. Structural equation modeling (SEM) facilitated by Smart PLS software evaluated the relationships between the constructs, followed by mediation analysis to assess the indirect associations in the model. The study findings offer insights into the intricate dynamics of organizational Creation, uncovering the interconnected relationships between business intelligence, customer experiential knowledge-based innovation (CEK-DI), marketing intelligence (MI), and product and service innovation (PSI), underscoring the pivotal role of advanced intelligence capabilities in developing innovative practices rooted in a profound understanding of customer experiences. Furthermore, the positive impact of BI on PSI reaffirms the significance of data-driven decision-making in shaping the innovation landscape. The significant impact of CEK-DI on PSI highlights the critical role of customer experiences in driving an organization. Companies that actively integrate customer insights into their opportunity creation processes are more likely to create offerings that match customer expectations, which drives higher levels of product and service sophistication. Additionally, the positive and significant impact of MI on CEK-DI underscores the critical role of market insights in shaping evolutionary strategies. While the relationship between MI and PSI is positive, the slightly weaker significance level indicates a subtle association, suggesting that while MI contributes to the development of ideas, In conclusion, the study emphasizes the fundamental role of intelligence capabilities, especially artificial intelligence, emphasizing the need for organizations to leverage market and customer intelligence to achieve effective and competitive innovation practices. Collaborative efforts between marketing and business intelligence serve as pivotal drivers of development, influencing customer experiential knowledge and shaping organizational strategies and practices. Future research could adopt longitudinal designs and gather data from various sectors to offer broader insights. Additionally, the study focuses on the effects of marketing intelligence, business intelligence, customer experiential knowledge, and innovation, but other unexamined variables may also influence innovation processes. Future studies could investigate additional factors, mediators, or moderators, including the role of emerging technologies like AI and machine learning in driving innovation.

Keywords: marketing intelligence, business intelligence, product, customer experiential knowledge-driven innovation

Procedia PDF Downloads 38
6227 Circular Bio-economy of Copper and Gold from Electronic Wastes

Authors: Sadia Ilyas, Hyunjung Kim, Rajiv R. Srivastava

Abstract:

Current work has attempted to establish the linkages between circular bio-economy and recycling of copper and gold from urban mine by applying microbial activities instead of the smelter and chemical technologies. Thereafter, based on the potential of microbial approaches and research hypothesis, the structural model has been tested for a significance level of 99%, which is supported by the corresponding standardization co-efficient values. A prediction model applied to determine the recycling impact on circular bio-economy indicates to re-circulate 51,833 tons of copper and 58 tons of gold by 2030 for the production of virgin metals/raw-materials, while recycling rate of the accumulated e-waste remains to be 20%. This restoration volume of copper and gold through the microbial activities corresponds to mitigate 174 million kg CO₂ emissions and 24 million m³ water consumption if compared with the primary production activities. The study potentially opens a new window for environmentally-friendly biotechnological recycling of e-waste urban mine under the umbrella concept of circular bio-economy.

Keywords: urban mining, biobleaching, circular bio-economy, environmental impact

Procedia PDF Downloads 161
6226 IoT Based Soil Moisture Monitoring System for Indoor Plants

Authors: Gul Rahim Rahimi

Abstract:

The IoT-based soil moisture monitoring system for indoor plants is designed to address the challenges of maintaining optimal moisture levels in soil for plant growth and health. The system utilizes sensor technology to collect real-time data on soil moisture levels, which is then processed and analyzed using machine learning algorithms. This allows for accurate and timely monitoring of soil moisture levels, ensuring plants receive the appropriate amount of water to thrive. The main objectives of the system are twofold: to keep plants fresh and healthy by preventing water deficiency and to provide users with comprehensive insights into the water content of the soil on a daily and hourly basis. By monitoring soil moisture levels, users can identify patterns and trends in water consumption, allowing for more informed decision-making regarding watering schedules and plant care. The scope of the system extends to the agriculture industry, where it can be utilized to minimize the efforts required by farmers to monitor soil moisture levels manually. By automating the process of soil moisture monitoring, farmers can optimize water usage, improve crop yields, and reduce the risk of plant diseases associated with over or under-watering. Key technologies employed in the system include the Capacitive Soil Moisture Sensor V1.2 for accurate soil moisture measurement, the Node MCU ESP8266-12E Board for data transmission and communication, and the Arduino framework for programming and development. Additionally, machine learning algorithms are utilized to analyze the collected data and provide actionable insights. Cloud storage is utilized to store and manage the data collected from multiple sensors, allowing for easy access and retrieval of information. Overall, the IoT-based soil moisture monitoring system offers a scalable and efficient solution for indoor plant care, with potential applications in agriculture and beyond. By harnessing the power of IoT and machine learning, the system empowers users to make informed decisions about plant watering, leading to healthier and more vibrant indoor environments.

Keywords: IoT-based, soil moisture monitoring, indoor plants, water management

Procedia PDF Downloads 56
6225 Examining Cross-Cultural Inclusive Practices for Students with Intellectual & Developmental Disabilities (IDD)

Authors: Adriana Rivera Vega, Micheal McCaurhty, Christina Cipriano

Abstract:

The world is becoming increasingly more diverse- ethnically, racially, and socially. Additionally, racial/ethnic minority students with intellectual and developmental disabilities (IDD) tend to be disproportionately represented in more restrictive special education classrooms than in general education classrooms. Inclusive practices play a significant role in the lives of individuals with IDD). A student's cultural identity also plays a salient role in teaching, learning, and student outcomes. It is, however, unclear whether and how the cultural identities of students with IDD are reflected in terminology, definitions, and practices related to inclusive education. As a part of a larger scoping review investigating inclusive practices for youth with IDD, this secondary study examines one facet of inclusion: cultural identity. Previous research suggests that students with IDD benefit from interventions based on their cultural background. A review of the limited peer-reviewed and grey literature on this subject revealed that the terminology, definitions, and practices around inclusive education tend to overlook students’ cultural identity in the teaching and learning processes for this population. Implications for future research are presented and recommendations for inclusive-based theoretical frameworks and inclusive practices using a cultural identity perspective are discussed.

Keywords: education, Psychology, policy, Multicultural Psychology

Procedia PDF Downloads 15