Search results for: nonlinear actuators
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1142

Search results for: nonlinear actuators

272 Closely Parametrical Model for an Electrical Arc Furnace

Authors: Labar Hocine, Dgeghader Yacine, Kelaiaia Mounia Samira, Bounaya Kamel

Abstract:

To maximise furnace production it-s necessary to optimise furnace control, with the objectives of achieving maximum power input into the melting process, minimum network distortion and power-off time, without compromise on quality and safety. This can be achieved with on the one hand by an appropriate electrode control and on the other hand by a minimum of AC transformer switching. Electrical arc is a stochastic process; witch is the principal cause of power quality problems, including voltages dips, harmonic distortion, unbalance loads and flicker. So it is difficult to make an appropriate model for an Electrical Arc Furnace (EAF). The factors that effect EAF operation are the melting or refining materials, melting stage, electrode position (arc length), electrode arm control and short circuit power of the feeder. So arc voltages, current and power are defined as a nonlinear function of the arc length. In this article we propose our own empirical function of the EAF and model, for the mean stages of the melting process, thanks to the measurements in the steel factory.

Keywords: Modelling, electrical arc, melting, power, EAF, steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3205
271 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network

Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing

Abstract:

Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.

Keywords: Convolutional neural network, lithology, prediction of reservoir lithology, seismic attributes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 603
270 Improving Image Segmentation Performance via Edge Preserving Regularization

Authors: Ying-jie Zhang, Li-ling Ge

Abstract:

This paper presents an improved image segmentation model with edge preserving regularization based on the piecewise-smooth Mumford-Shah functional. A level set formulation is considered for the Mumford-Shah functional minimization in segmentation, and the corresponding partial difference equations are solved by the backward Euler discretization. Aiming at encouraging edge preserving regularization, a new edge indicator function is introduced at level set frame. In which all the grid points which is used to locate the level set curve are considered to avoid blurring the edges and a nonlinear smooth constraint function as regularization term is applied to smooth the image in the isophote direction instead of the gradient direction. In implementation, some strategies such as a new scheme for extension of u+ and u- computation of the grid points and speedup of the convergence are studied to improve the efficacy of the algorithm. The resulting algorithm has been implemented and compared with the previous methods, and has been proved efficiently by several cases.

Keywords: Energy minimization, image segmentation, level sets, edge regularization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
269 Application of Neural Networks to Predict Changing the Diameters of Bubbles in Pool Boiling Distilled Water

Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian, D. Ashouri

Abstract:

In this research, the capability of neural networks in  modeling and learning complicated and nonlinear relations has been  used to develop a model for the prediction of changes in the diameter  of bubbles in pool boiling distilled water. The input parameters used  in the development of this network include element temperature, heat  flux, and retention time of bubbles. The test data obtained from the  experiment of the pool boiling of distilled water, and the  measurement of the bubbles form on the cylindrical element. The  model was developed based on training algorithm, which is  typologically of back-propagation type. Considering the correlation  coefficient obtained from this model is 0.9633. This shows that this  model can be trusted for the simulation and modeling of the size of  bubble and thermal transfer of boiling.

Keywords: Bubble Diameter, Heat Flux, Neural Network, Training Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
268 Controller Design for Euler-Bernoulli Smart Structures Using Robust Decentralized POF via Reduced Order Modeling

Authors: T.C. Manjunath, B. Bandyopadhyay

Abstract:

This paper features the proposed modeling and design of a Robust Decentralized Periodic Output Feedback (RDPOF) control technique for the active vibration control of smart flexible multimodel Euler-Bernoulli cantilever beams for a multivariable (MIMO) case by retaining the first 6 vibratory modes. The beam structure is modeled in state space form using the concept of piezoelectric theory, the Euler-Bernoulli beam theory and the Finite Element Method (FEM) technique by dividing the beam into 4 finite elements and placing the piezoelectric sensor / actuator at two finite element locations (positions 2 and 4) as collocated pairs, i.e., as surface mounted sensor / actuator, thus giving rise to a multivariable model of the smart structure plant with two inputs and two outputs. Five such multivariable models are obtained by varying the dimensions (aspect ratios) of the aluminum beam, thus giving rise to a multimodel of the smart structure system. Using model order reduction technique, the reduced order model of the higher order system is obtained based on dominant eigen value retention and the method of Davison. RDPOF controllers are designed for the above 5 multivariable-multimodel plant. The closed loop responses with the RDPOF feedback gain and the magnitudes of the control input are observed and the performance of the proposed multimodel smart structure system with the controller is evaluated for vibration control.

Keywords: Smart structure, Euler-Bernoulli beam theory, Periodic output feedback control, Finite Element Method, State space model, SISO, Embedded sensors and actuators, Vibration control, Reduced order model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000
267 A New Approach for Network Reconfiguration Problem in Order to Deviation Bus Voltage Minimization with Regard to Probabilistic Load Model and DGs

Authors: Mahmood Reza Shakarami, Reza Sedaghati

Abstract:

Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. The distribution feeder reconfiguration (DFR) is one of the most important control schemes in the distribution networks, which can be affected by DGs. This paper presents a new approach to DFR at the distribution networks considering wind turbines. The main objective of the DFR is to minimize the deviation of the bus voltage. Since the DFR is a nonlinear optimization problem, we apply the Adaptive Modified Firefly Optimization (AMFO) approach to solve it. As a result of the conflicting behavior of the single- objective function, a fuzzy based clustering technique is employed to reach the set of optimal solutions called Pareto solutions. The approach is tested on the IEEE 32-bus standard test system.

Keywords: Adaptive Modified Firefly Optimization (AMFO), Pareto solutions, feeder reconfiguration, wind turbines, bus voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
266 Auto-Selective Three Term Control of Position and Compliance of a Pneumatic Actuator

Authors: M. G. Papoutsidakis, G. Chamilothoris, A Pipe

Abstract:

Due to their high power-to-weight ratio and low cost, pneumatic actuators are attractive for robotics and automation applications; however, achieving fast and accurate control of their position have been known as a complex control problem. The paper presents a methodology for obtaining controllers that achieve high position accuracy and preserve the closed-loop characteristics over a broad operating range. Experimentation with a number of conventional (or "classical") three-term controllers shows that, as repeated operations accumulate, the characteristics of the pneumatic actuator change requiring frequent re-tuning of the controller parameters (PID gains). Furthermore, three-term controllers are found to perform poorly in recovering the closed-loop system after the application of load or other external disturbances. The key reason for these problems lies in the non-linear exchange of energy inside the cylinder relating, in particular, to the complex friction forces that develop on the piston-wall interface. In order to overcome this problem but still remain within the boundaries of classical control methods, we designed an auto selective classicaql controller so that the system performance would benefit from all three control gains (KP, Kd, Ki) according to system requirements and the characteristics of each type of controller. This challenging experimentation took place for consistent performance in the face of modelling imprecision and disturbances. In the work presented, a selective PID controller is presented for an experimental rig comprising an air cylinder driven by a variable-opening pneumatic valve and equipped with position and pressure sensors. The paper reports on tests carried out to investigate the capability of this specific controller to achieve consistent control performance under, repeated operations and other changes in operating conditions.

Keywords: Classical selective controller, long-termexperimentation, pneumatic actuator, position accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
265 Evolutionary Computation Technique for Solving Riccati Differential Equation of Arbitrary Order

Authors: Raja Muhammad Asif Zahoor, Junaid Ali Khan, I. M. Qureshi

Abstract:

In this article an evolutionary technique has been used for the solution of nonlinear Riccati differential equations of fractional order. In this method, genetic algorithm is used as a tool for the competent global search method hybridized with active-set algorithm for efficient local search. The proposed method has been successfully applied to solve the different forms of Riccati differential equations. The strength of proposed method has in its equal applicability for the integer order case, as well as, fractional order case. Comparison of the method has been made with standard numerical techniques as well as the analytic solutions. It is found that the designed method can provide the solution to the equation with better accuracy than its counterpart deterministic approaches. Another advantage of the given approach is to provide results on entire finite continuous domain unlike other numerical methods which provide solutions only on discrete grid of points.

Keywords: Riccati Equation, Non linear ODE, Fractional differential equation, Genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
264 Lower Order Harmonics Minimisation in CHB Inverter Using GA and Decomposition by WT

Authors: V. Joshi Manohar, P. Sujatha, K. S. R. Anjaneyulu

Abstract:

Nowadays Multilevel inverters are widely using in various applications. Modulation strategy at fundamental switching frequency like, SHEPWM is prominent technique to eliminate lower order of harmonics with less switching losses and better harmonic profile. The equations which are formed by SHE are highly nonlinear transcendental in nature, there may exist single, multiple or even no solutions for a particular MI. However, some loads such as electrical drives, it is required to operate in whole range of MI. In order to solve SHE equations for whole range of MI, intelligent techniques are well suited to solve equations so as to produce lest %THDV. Hence, this paper uses Continuous genetic algorithm for minimising harmonics. This paper also presents wavelet based analysis of harmonics. The developed algorithm is simulated and %THD from FFT analysis and Wavelet analysis are compared. MATLAB programming environment and SIMULINK models are used whenever necessary.

Keywords: Cascade H-Bridge Inverter (CHB), Continuous Genetic Algorithm (C-GA), Selective Harmonic Elimination Pulse Width Modulation (SHEPWM), Total Harmonic Distortion (%THDv), Wavelet Transform (WT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2864
263 Gravitational Search Algorithm (GSA) Optimized SSSC Based Facts Controller to Improve Power System Oscillation Stability

Authors: Gayadhar Panda, P. K. Rautraya

Abstract:

In this paper, an investigation into the use of modified Genetic Algorithm optimized SSSC based controller to aid damping of low frequency inter-area oscillations in power systems is presented. Controller design is formulated as a nonlinear constrained optimization problem and modified Genetic Algorithm (MGA) is employed to search for the optimal controller parameters. For evaluation of effectiveness and robustness of proposed controllers, the performance was tested on multi-machine system subjected to different disturbances, loading conditions and system parameter variations. Simulation results are presented to show the fine performance of the proposed SSSC controller in damping the critical modes without significantly deteriorating the damping characteristics of other modes in multi-machine power system.

Keywords: SSSC, FACTS, Controller Design, Damping of Oscillations, Multi-machine system, Modified Genetic Algorithm (MGA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
262 PID Control Design Based on Genetic Algorithm with Integrator Anti-Windup for Automatic Voltage Regulator and Speed Governor of Brushless Synchronous Generator

Authors: O. S. Ebrahim, M. A. Badr, Kh. H. Gharib, H. K. Temraz

Abstract:

This paper presents a methodology based on genetic algorithm (GA) to tune the parameters of proportional-integral-differential (PID) controllers utilized in the automatic voltage regulator (AVR) and speed governor of a brushless synchronous generator driven by three-stage steam turbine. The parameter tuning is represented as a nonlinear optimization problem solved by GA to minimize the integral of absolute error (IAE). The problem of integral windup due to physical system limitations is solved using simple anti-windup scheme. The obtained controllers are compared to those designed using classical Ziegler-Nichols technique and constrained optimization. Results show distinct superiority of the proposed method.

Keywords: Brushless synchronous generator, Genetic Algorithm, GA, Proportional-Integral-Differential control, PID control, automatic voltage regulator, AVR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196
261 Acid Fuchsin Dye Based PMMA Film for Holographic Investigations

Authors: G. Vinitha, A. Ramalingam

Abstract:

In view of a possible application in optical data storage devices, diffraction grating efficiency of an organic dye, Acid Fuchsin doped in PMMA matrix was studied under excitation with CW diode pumped Nd: YAG laser at 532 nm. The open aperture Zscan of dye doped polymer displayed saturable absorption and the closed aperture Z-scan of the samples exhibited negative nonlinearity. The diffraction efficiency of the grating is the ratio of the intensity of the first order diffracted power to the incident read beam power. The dye doped polymer films were found to be good media for recording. It is observed that the formation of gratings strongly depend on the concentration of dye in the polymer film, the intensity ratios of the writing beams and the angle between the writing beams. It has been found that efficient writing can be made at an angle of 20o and when the intensity ratio of the writing beams is unity.

Keywords: Diffraction efficiency, Nonlinear Optical material, saturable absorption, Surface-relief-gratings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116
260 Free Vibration Analysis of Gabled Frame Considering Elastic Supports and Semi-Rigid Connections

Authors: A. Shooshtari, A. R. Masoodi, S. Heyrani Moghaddam

Abstract:

Free vibration analysis of a gabled frame with elastic support and semi-rigid connections is performed by using a program in OpenSees software. Natural frequencies and mode shape details of frame are obtained for two states, which are semi-rigid connections and elastic supports, separately. The members of this structure are analyzed as a prismatic nonlinear beam-column element in software. The mass of structure is considered as two equal lumped masses at the head of two columns in horizontal and vertical directions. Note that the degree of freedom, allocated to all nodes, is equal to three. Furthermore, the mode shapes of frame are achieved. Conclusively, the effects of connections and supports flexibility on the natural frequencies and mode shapes of structure are investigated.  

Keywords: Natural frequency, mode shape, gabled frame, semi-rigid connection, elastic support, OpenSees software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2988
259 Generalized Predictive Control of Batch Polymerization Reactor

Authors: R. Khaniki, M.B. Menhaj, H. Eliasi

Abstract:

This paper describes the application of a model predictive controller to the problem of batch reactor temperature control. Although a great deal of work has been done to improve reactor throughput using batch sequence control, the control of the actual reactor temperature remains a difficult problem for many operators of these processes. Temperature control is important as many chemical reactions are sensitive to temperature for formation of desired products. This controller consist of two part (1) a nonlinear control method GLC (Global Linearizing Control) to create a linear model of system and (2) a Model predictive controller used to obtain optimal input control sequence. The temperature of reactor is tuned to track a predetermined temperature trajectory that applied to the batch reactor. To do so two input signals, electrical powers and the flow of coolant in the coil are used. Simulation results show that the proposed controller has a remarkable performance for tracking reference trajectory while at the same time it is robust against noise imposed to system output.

Keywords: Generalized Predictive Control (GPC), TemperatureControl, Global Linearizing Control (GLC), Batch Reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
258 Generalized Predictive Control of Batch Polymerization Reactor

Authors: R. Khaniki, M.B. Menhaj, H. Eliasi

Abstract:

This paper describes the application of a model predictive controller to the problem of batch reactor temperature control. Although a great deal of work has been done to improve reactor throughput using batch sequence control, the control of the actual reactor temperature remains a difficult problem for many operators of these processes. Temperature control is important as many chemical reactions are sensitive to temperature for formation of desired products. This controller consist of two part (1) a nonlinear control method GLC (Global Linearizing Control) to create a linear model of system and (2) a Model predictive controller used to obtain optimal input control sequence. The temperature of reactor is tuned to track a predetermined temperature trajectory that applied to the batch reactor. To do so two input signals, electrical powers and the flow of coolant in the coil are used. Simulation results show that the proposed controller has a remarkable performance for tracking reference trajectory while at the same time it is robust against noise imposed to system output.

Keywords: Generalized Predictive Control (GPC), TemperatureControl, Global Linearizing Control (GLC), Batch Reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
257 Nonlinear Seismic Dynamic Response of Continuous Curved Highway Viaducts with Different Bearing Supports

Authors: Rinna Tanaka, Carlos Mendez Galindo, Toshiro Hayashikawa

Abstract:

The results show that the bridge equipped with seismic isolation bearing system shows a high amount of energy dissipation. The purpose of the present study is to analyze the overall performance of continuous curved highway viaducts with different bearing supports, with an emphasis on the effectiveness of seismic isolation based on lead rubber bearing and hedge reaction force bearing system consisted of friction sliding bearing and rubber bearing. The bridge seismic performance has been evaluated on six different cases with six bearing models. The effects of the different arrangement of bearing on the deck superstructure displacements, the seismic damage at the bottom of the piers, movement track at the pier-s top and the total and strain energies absorbed by the structure are evaluated. In conclusion, the results provide sufficient evidence of the effectiveness on the use of seismic isolation on steel curved highway bridges.

Keywords: Curved highway viaducts, non-linear dynamic response, seismic damage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
256 A Large Dataset Imputation Approach Applied to Country Conflict Prediction Data

Authors: Benjamin D. Leiby, Darryl K. Ahner

Abstract:

This study demonstrates an alternative stochastic imputation approach for large datasets when preferred commercial packages struggle to iterate due to numerical problems. A large country conflict dataset motivates the search to impute missing values well over a common threshold of 20% missingness. The methodology capitalizes on correlation while using model residuals to provide the uncertainty in estimating unknown values. Examination of the methodology provides insight toward choosing linear or nonlinear modeling terms. Static tolerances common in most packages are replaced with tailorable tolerances that exploit residuals to fit each data element. The methodology evaluation includes observing computation time, model fit, and the comparison of known  values to replaced values created through imputation. Overall, the country conflict dataset illustrates promise with modeling first-order interactions, while presenting a need for further refinement that mimics predictive mean matching.

Keywords: Correlation, country conflict, imputation, stochastic regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 365
255 Sway Reduction on Gantry Crane System using Delayed Feedback Signal and PD-type Fuzzy Logic Controller: A Comparative Assessment

Authors: M.A. Ahmad

Abstract:

This paper presents the use of anti-sway angle control approaches for a two-dimensional gantry crane with disturbances effect in the dynamic system. Delayed feedback signal (DFS) and proportional-derivative (PD)-type fuzzy logic controller are the techniques used in this investigation to actively control the sway angle of the rope of gantry crane system. A nonlinear overhead gantry crane system is considered and the dynamic model of the system is derived using the Euler-Lagrange formulation. A complete analysis of simulation results for each technique is presented in time domain and frequency domain respectively. Performances of both controllers are examined in terms of sway angle suppression and disturbances cancellation. Finally, a comparative assessment of the impact of each controller on the system performance is presented and discussed.

Keywords: Gantry crane, anti-sway control, DFS controller, PD-type Fuzzy Logic Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2110
254 Bond Graph Modeling of Mechanical Dynamics of an Excavator for Hydraulic System Analysis and Design

Authors: Mutuku Muvengei, John Kihiu

Abstract:

This paper focuses on the development of bond graph dynamic model of the mechanical dynamics of an excavating mechanism previously designed to be used with small tractors, which are fabricated in the Engineering Workshops of Jomo Kenyatta University of Agriculture and Technology. To develop a mechanical dynamics model of the manipulator, forward recursive equations similar to those applied in iterative Newton-Euler method were used to obtain kinematic relationships between the time rates of joint variables and the generalized cartesian velocities for the centroids of the links. Representing the obtained kinematic relationships in bondgraphic form, while considering the link weights and momenta as the elements led to a detailed bond graph model of the manipulator. The bond graph method was found to reduce significantly the number of recursive computations performed on a 3 DOF manipulator for a mechanical dynamic model to result, hence indicating that bond graph method is more computationally efficient than the Newton-Euler method in developing dynamic models of 3 DOF planar manipulators. The model was verified by comparing the joint torque expressions of a two link planar manipulator to those obtained using Newton- Euler and Lagrangian methods as analyzed in robotic textbooks. The expressions were found to agree indicating that the model captures the aspects of rigid body dynamics of the manipulator. Based on the model developed, actuator sizing and valve sizing methodologies were developed and used to obtain the optimal sizes of the pistons and spool valve ports respectively. It was found that using the pump with the sized flow rate capacity, the engine of the tractor is able to power the excavating mechanism in digging a sandy-loom soil.

Keywords: Actuators, bond graphs, inverse dynamics, recursive equations, quintic polynomial trajectory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2848
253 Local Linear Model Tree (LOLIMOT) Reconfigurable Parallel Hardware

Authors: A. Pedram, M. R. Jamali, T. Pedram, S. M. Fakhraie, C. Lucas

Abstract:

Local Linear Neuro-Fuzzy Models (LLNFM) like other neuro- fuzzy systems are adaptive networks and provide robust learning capabilities and are widely utilized in various applications such as pattern recognition, system identification, image processing and prediction. Local linear model tree (LOLIMOT) is a type of Takagi-Sugeno-Kang neuro fuzzy algorithm which has proven its efficiency compared with other neuro fuzzy networks in learning the nonlinear systems and pattern recognition. In this paper, a dedicated reconfigurable and parallel processing hardware for LOLIMOT algorithm and its applications are presented. This hardware realizes on-chip learning which gives it the capability to work as a standalone device in a system. The synthesis results on FPGA platforms show its potential to improve the speed at least 250 of times faster than software implemented algorithms.

Keywords: LOLIMOT, hardware, neurofuzzy systems, reconfigurable, parallel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3837
252 Gain Tuning Fuzzy Controller for an Optical Disk Drive

Authors: Shiuh-Jer Huang, Ming-Tien Su

Abstract:

Since the driving speed and control accuracy of commercial optical disk are increasing significantly, it needs an efficient controller to monitor the track seeking and following operations of the servo system for achieving the desired data extracting response. The nonlinear behaviors of the actuator and servo system of the optical disk drive will influence the laser spot positioning. Here, the model-free fuzzy control scheme is employed to design the track seeking servo controller for a d.c. motor driving optical disk drive system. In addition, the sliding model control strategy is introduced into the fuzzy control structure to construct a 1-D adaptive fuzzy rule intelligent controller for simplifying the implementation problem and improving the control performance. The experimental results show that the steady state error of the track seeking by using this fuzzy controller can maintain within the track width (1.6 μm ). It can be used in the track seeking and track following servo control operations.

Keywords: Fuzzy control, gain tuning and optical disk drive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
251 FWM Aware Fuzzy Dynamic Routing and Wavelength Assignment in Transparent Optical Networks

Authors: Debajyoti Mishra, Urmila Bhanja

Abstract:

In this paper, a novel fuzzy approach is developed while solving the Dynamic Routing and Wavelength Assignment (DRWA) problem in optical networks with Wavelength Division Multiplexing (WDM). In this work, the effect of nonlinear and linear impairments such as Four Wave Mixing (FWM) and amplifier spontaneous emission (ASE) noise are incorporated respectively. The novel algorithm incorporates fuzzy logic controller (FLC) to reduce the effect of FWM noise and ASE noise on a requested lightpath referred in this work as FWM aware fuzzy dynamic routing and wavelength assignment algorithm. The FWM crosstalk products and the static FWM noise power per link are pre computed in order to reduce the set up time of a requested lightpath, and stored in an offline database. These are retrieved during the setting up of a lightpath and evaluated online taking the dynamic parameters like cost of the links into consideration.

Keywords: Amplifier spontaneous emission (ASE), Dynamic routing and wavelength assignment, Four wave mixing (FWM), Fuzzy rule based system (FRBS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704
250 Probabilistic Characteristics of older PR Frames in the Mid-America Earthquake Region

Authors: Do-Hwan Kim, Roberto Leon

Abstract:

Probabilistic characteristics of seismic responses of the Partially Restrained connection rotation (PRCR) and panel zone deformation (PZD) installed in older steel moment frames were investigated in accordance with statistical inference in decision-making process. The 4, 6 and 8 story older steel moment frames with clip angle and T-stub connections were designed and analyzed using 2%/50yrs ground motions in four cities of the Mid-America earthquake region. The probability density function and cumulative distribution function of PRCR and PZD were determined by the goodness-of-fit tests based on probabilistic parameters measured from the results of the nonlinear time-history analyses. The obtained probabilistic parameters and distributions can be used to find out what performance level mainly PR connections and panel zones satisfy and how many PR connections and panel zones experience a serious damage under the Mid-America ground motions.

Keywords: Mid-America earthquake, Panel zone, PR connection, Probabilistic characteristics, seismic performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
249 A Lagrangian Hamiltonian Computational Method for Hyper-Elastic Structural Dynamics

Authors: Hosein Falahaty, Hitoshi Gotoh, Abbas Khayyer

Abstract:

Performance of a Hamiltonian based particle method in simulation of nonlinear structural dynamics is subjected to investigation in terms of stability and accuracy. The governing equation of motion is derived based on Hamilton's principle of least action, while the deformation gradient is obtained according to Weighted Least Square method. The hyper-elasticity models of Saint Venant-Kirchhoff and a compressible version similar to Mooney- Rivlin are engaged for the calculation of second Piola-Kirchhoff stress tensor, respectively. Stability along with accuracy of numerical model is verified by reproducing critical stress fields in static and dynamic responses. As the results, although performance of Hamiltonian based model is evaluated as being acceptable in dealing with intense extensional stress fields, however kinds of instabilities reveal in the case of violent collision which can be most likely attributed to zero energy singular modes.

Keywords: Hamilton's principle of least action, particle based method, hyper-elasticity, analysis of stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
248 Numerical Analysis of Roughness Effect on Mini and Microchannels: Hydrodynamics and Heat Transfer

Authors: El-Ghalia Filali, Cherif Gadouche, Mohamed Tahar

Abstract:

A three-dimensional numerical simulation of flow through mini and microchannels with designed roughness is conducted here. The effect of the roughness height (surface roughness), geometry, Reynolds number on the friction factor, and Nusselt number is investigated. The study is carried out by employing CFD software, CFX. Our work focuses on a water flow inside a circular mini-channel of 1 mm and microchannels of 500 and 100 m in diameter. The speed entry varies from 0.1 m/s to 20 m/s. The general trend can be observed that bigger sizes of roughness element lead to higher flow resistance. It is found that the friction factor increases in a nonlinear fashion with the increase in obstruction height. Particularly, the effect of roughness can no longer be ignored at relative roughness height higher than 3%. A significant increase in Poiseuille number is detected for all configurations considered. The same observation can be done for Nusselt number. The transition zone between laminar and turbulent flow depends on the channel diameter.

Keywords: Heat transfer, hydrodynamics, micro-channel, roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
247 Computational Approaches for Ballistic Impact Response of Stainless Steel 304

Authors: A. Mostafa

Abstract:

This paper presents a numerical study on determination of ballistic limit velocity (V50) of stainless steel 304 (SS 304) used in manufacturing security screens. The simulated ballistic impact tests were conducted on clamped sheets with different thicknesses using ABAQUS/Explicit nonlinear finite element (FE) package. The ballistic limit velocity was determined using three approaches, namely: numerical tests based on material properties, FE calculated residual velocities and FE calculated residual energies. Johnson-Cook plasticity and failure criterion were utilized to simulate the dynamic behaviour of the SS 304 under various strain rates, while the well-known Lambert-Jonas equation was used for the data regression for the residual velocity and energy model. Good agreement between the investigated numerical methods was achieved. Additionally, the dependence of the ballistic limit velocity on the sheet thickness was observed. The proposed approaches present viable and cost-effective assessment methods of the ballistic performance of SS 304, which will support the development of robust security screen systems.

Keywords: Ballistic velocity, stainless steel, numerical approaches, security screen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 587
246 Decoupled, Reduced Order Model for Double Output Induction Generator Using Integral Manifolds and Iterative Separation Theory

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

In this paper presents a technique for developing the computational efficiency in simulating double output induction generators (DOIG) with two rotor circuits where stator transients are to be included. Iterative decomposition is used to separate the flux– Linkage equations into decoupled fast and slow subsystems, after which the model order of the fast subsystems is reduced by neglecting the heavily damped fast transients caused by the second rotor circuit using integral manifolds theory. The two decoupled subsystems along with the equation for the very slowly changing slip constitute a three time-scale model for the machine which resulted in increasing computational speed. Finally, the proposed method of reduced order in this paper is compared with the other conventional methods in linear and nonlinear modes and it is shown that this method is better than the other methods regarding simulation accuracy and speed.

Keywords: DOIG, Iterative separation, Integral manifolds, Reduced order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1225
245 Selection of Intensity Measure in Probabilistic Seismic Risk Assessment of a Turkish Railway Bridge

Authors: M. F. Yilmaz, B. Ö. Çağlayan

Abstract:

Fragility curve is an effective common used tool to determine the earthquake performance of structural and nonstructural components. Also, it is used to determine the nonlinear behavior of bridges. There are many historical bridges in the Turkish railway network; the earthquake performances of these bridges are needed to be investigated. To derive fragility curve Intensity measures (IMs) and Engineering demand parameters (EDP) are needed to be determined. And the relation between IMs and EDP are needed to be derived. In this study, a typical simply supported steel girder riveted railway bridge is studied. Fragility curves of this bridge are derived by two parameters lognormal distribution. Time history analyses are done for selected 60 real earthquake data to determine the relation between IMs and EDP. Moreover, efficiency, practicality, and sufficiency of three different IMs are discussed. PGA, Sa(0.2s) and Sa(1s), the most common used IMs parameters for fragility curve in the literature, are taken into consideration in terms of efficiency, practicality and sufficiency.

Keywords: Railway bridges, earthquake performance, fragility analyses, selection of intensity measures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 848
244 Seismic Fragility Curves for Shallow Circular Tunnels under Different Soil Conditions

Authors: Siti Khadijah Che Osmi, Syed Mohd Ahmad

Abstract:

This paper presents a methodology to develop fragility curves for shallow tunnels so as to describe a relationship between seismic hazard and tunnel vulnerability. Emphasis is given to the influence of surrounding soil material properties because the dynamic behaviour of the tunnel mostly depends on it. Four ground properties of soils ranging from stiff to soft soils are selected. A 3D nonlinear time history analysis is used to evaluate the seismic response of the tunnel when subjected to five real earthquake ground intensities. The derived curves show the future probabilistic performance of the tunnels based on the predicted level of damage states corresponding to the peak ground acceleration. A comparison of the obtained results with the previous literature is provided to validate the reliability of the proposed fragility curves. Results show the significant role of soil properties and input motions in evaluating the seismic performance and response of shallow tunnels.

Keywords: Fragility analysis, seismic performance, tunnel lining, vulnerability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340
243 H-Infinity and RST Position Controllers of Rotary Traveling Wave Ultrasonic Motor

Authors: M. Brahim, I. Bahri, Y. Bernard

Abstract:

Traveling Wave Ultrasonic Motor (TWUM) is a compact, precise, and silent actuator generating high torque at low speed without gears. Moreover, the TWUM has a high holding torque without supply, which makes this motor as an attractive solution for holding position of robotic arms. However, their nonlinear dynamics, and the presence of load-dependent dead zones often limit their use. Those issues can be overcome in closed loop with effective and precise controllers. In this paper, robust H-infinity (H∞) and discrete time RST position controllers are presented. The H∞ controller is designed in continuous time with additional weighting filters to ensure the robustness in the case of uncertain motor model and external disturbances. Robust RST controller based on the pole placement method is also designed and compared to the H∞. Simulink model of TWUM is used to validate the stability and the robustness of the two proposed controllers.

Keywords: Piezoelectric motors, position control, H∞, RST, stability criteria, robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 919