**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**1056

# Search results for: Riccati Equation

##### 1056 An Analytical Method for Solving General Riccati Equation

**Authors:**
Y. Pala,
M. O. Ertas

**Abstract:**

In this paper, the general Riccati equation is analytically solved by a new transformation. By the method developed, looking at the transformed equation, whether or not an explicit solution can be obtained is readily determined. Since the present method does not require a proper solution for the general solution, it is especially suitable for equations whose proper solutions cannot be seen at first glance. Since the transformed second order linear equation obtained by the present transformation has the simplest form that it can have, it is immediately seen whether or not the original equation can be solved analytically. The present method is exemplified by several examples.

**Keywords:**
Riccati Equation,
ordinary differential equation,
nonlinear differential equation,
analytical solution,
proper solution.

##### 1055 Algebraic Riccati Matrix Equation for Eigen- Decomposition of Special Structured Matrices; Applications in Structural Mechanics

**Authors:**
Mahdi Nouri

**Abstract:**

In this paper Algebraic Riccati matrix equation is used for Eigen-decomposition of special structured matrices. This is achieved by similarity transformation and then using algebraic riccati matrix equation to triangulation of matrices. The process is decomposition of matrices into small and specially structured submatrices with low dimensions for fast and easy finding of Eigenpairs. Numerical and structural examples included showing the efficiency of present method.

**Keywords:**
Riccati,
matrix equation,
eigenvalue problem,
symmetric,
bisymmetric,
persymmetric,
decomposition,
canonical
forms,
Graphs theory,
adjacency and Laplacian matrices.

##### 1054 State Dependent Riccati Equation Based Roll Autopilot for 122mm Artillery Rocket

**Authors:**
Muhammad Kashif Siddiq,
Fang Jian Cheng,
Yu Wen Bo

**Abstract:**

**Keywords:**
Fin stabilized 122mm artillery rocket,
Roll
Autopilot,
Six degree of freedom trajectory model,
State-dependent
Riccati equation.

##### 1053 Numerical Solution of Riccati Differential Equations by Using Hybrid Functions and Tau Method

**Authors:**
Changqing Yang,
Jianhua Hou,
Beibo Qin

**Abstract:**

A numerical method for Riccati equation is presented in this work. The method is based on the replacement of unknown functions through a truncated series of hybrid of block-pulse functions and Chebyshev polynomials. The operational matrices of derivative and product of hybrid functions are presented. These matrices together with the tau method are then utilized to transform the differential equation into a system of algebraic equations. Corresponding numerical examples are presented to demonstrate the accuracy of the proposed method.

**Keywords:**
Hybrid functions,
Riccati differential equation,
Blockpulse,
Chebyshev polynomials,
Tau method,
operational matrix.

##### 1052 Evolutionary Computation Technique for Solving Riccati Differential Equation of Arbitrary Order

**Authors:**
Raja Muhammad Asif Zahoor,
Junaid Ali Khan,
I. M. Qureshi

**Abstract:**

**Keywords:**
Riccati Equation,
Non linear ODE,
Fractional differential equation,
Genetic algorithm.

##### 1051 Traveling Wave Solutions for the (3+1)-Dimensional Breaking Soliton Equation by (G'/G)- Expansion Method and Modified F-Expansion Method

**Authors:**
Mohammad Taghi Darvishi,
Maliheh Najafi,
Mohammad Najafi

**Abstract:**

In this paper, using (G/G )-expansion method and modified F-expansion method, we give some explicit formulas of exact traveling wave solutions for the (3+1)-dimensional breaking soliton equation. A modified F-expansion method is proposed by taking full advantages of F-expansion method and Riccati equation in seeking exact solutions of the equation.

**Keywords:**
Exact solution,
The (3+1)-dimensional breaking soliton equation,
( G G )-expansion method,
Riccati equation,
Modified Fexpansion method.

##### 1050 Control of Pendulum on a Cart with State Dependent Riccati Equations

**Authors:**
N. M. Singh,
Jayant Dubey,
Ghanshyam Laddha

**Abstract:**

**Keywords:**
State Dependent Riccati Equation (SDRE),
Single Inverted Pendulum (SIP),
Linear Quadratic Regulator (LQR)

##### 1049 Delay-independent Stabilization of Linear Systems with Multiple Time-delays

**Authors:**
Ping He,
Heng-You Lan,
Gong-Quan Tan

**Abstract:**

**Keywords:**
Linear system,
Delay-independent stabilization,
Lyapunovfunctional,
Riccati algebra matrix equation.

##### 1048 Optimal Space Vector Control for Permanent Magnet Synchronous Motor based on Nonrecursive Riccati Equation

**Authors:**
Marian Gaiceanu,
Emil Rosu

**Abstract:**

**Keywords:**
Matlab/Simulink,
optimal control,
permanent
magnet synchronous motor,
Riccati equation,
space vector PWM

##### 1047 Oscillation Theorems for Second-order Nonlinear Neutral Dynamic Equations with Variable Delays and Damping

**Authors:**
Da-Xue Chen,
Guang-Hui Liu

**Abstract:**

In this paper, we study the oscillation of a class of second-order nonlinear neutral damped variable delay dynamic equations on time scales. By using a generalized Riccati transformation technique, we obtain some sufficient conditions for the oscillation of the equations. The results of this paper improve and extend some known results. We also illustrate our main results with some examples.

**Keywords:**
Oscillation theorem,
second-order nonlinear neutral dynamic equation,
variable delay,
damping,
Riccati transformation.

##### 1046 On the Integer Solutions of the Pell Equation x2 - dy2 = 2t

**Authors:**
Ahmet Tekcan,
Betül Gezer,
Osman Bizim

**Abstract:**

Let k ≥ 1 and t ≥ 0 be two integers and let d = k2 + k be a positive non-square integer. In this paper, we consider the integer solutions of Pell equation x2 - dy2 = 2t. Further we derive a recurrence relation on the solutions of this equation.

**Keywords:**
Pell equation,
Diophantine equation.

##### 1045 The Proof of Two Conjectures Related to Pell-s Equation x2 −Dy2 = ± 4

**Authors:**
Armend Sh. Shabani

**Abstract:**

**Keywords:**
Pell's equation,
solutions of Pell's equation.

##### 1044 The Pell Equation x2 − Py2 = Q

**Authors:**
Ahmet Tekcan,
Arzu Özkoç,
Canan Kocapınar,
Hatice Alkan

**Abstract:**

**Keywords:**
Pell equation,
solutions of Pell equation.

##### 1043 The Diophantine Equation y2 − 2yx − 3 = 0 and Corresponding Curves over Fp

**Authors:**
Ahmet Tekcan,
Arzu Özkoç,
Hatice Alkan

**Abstract:**

**Keywords:**
Diophantine equation,
Pell equation,
quadratic form.

##### 1042 Solution of The KdV Equation with Asymptotic Degeneracy

**Authors:**
Tapas Kumar Sinha,
Joseph Mathew

**Abstract:**

Recently T. C. Au-Yeung, C.Au, and P. C. W. Fung [2] have given the solution of the KdV equation [1] to the boundary condition , where b is a constant. We have further extended the method of [2] to find the solution of the KdV equation with asymptotic degeneracy. Via simulations we find both bright and dark Solitons (i.e. Solitons with opposite phases).

**Keywords:**
KdV equation,
Asymptotic Degeneracy,
Solitons,
Inverse Scattering

##### 1041 Exact Solutions of the Helmholtz equation via the Nikiforov-Uvarov Method

**Authors:**
Said Laachir,
Aziz Laaribi

**Abstract:**

The Helmholtz equation often arises in the study of physical problems involving partial differential equation. Many researchers have proposed numerous methods to find the analytic or approximate solutions for the proposed problems. In this work, the exact analytical solutions of the Helmholtz equation in spherical polar coordinates are presented using the Nikiforov-Uvarov (NU) method. It is found that the solution of the angular eigenfunction can be expressed by the associated-Legendre polynomial and radial eigenfunctions are obtained in terms of the Laguerre polynomials. The special case for k=0, which corresponds to the Laplace equation is also presented.

**Keywords:**
Helmholtz equation,
Nikiforov-Uvarov method,
exact solutions,
eigenfunctions.

##### 1040 Study of Cahn-Hilliard Equation to Simulate Phase Separation

**Authors:**
Nara Guimarães,
Marcelo Aquino Martorano,
Douglas Gouvêa

**Abstract:**

An investigation into Cahn-Hilliard equation was carried out through numerical simulation to identify a possible phase separation for one and two dimensional domains. It was observed that this equation can reproduce important mass fluxes necessary for phase separation within the miscibility gap and for coalescence of particles.

**Keywords:**
Cahn-Hilliard equation,
miscibility gap,
phase
separation.

##### 1039 Transient Population Dynamics of Phase Singularities in 2D Beeler-Reuter Model

**Authors:**
Hidetoshi Konno,
Akio Suzuki

**Abstract:**

The paper presented a transient population dynamics of phase singularities in 2D Beeler-Reuter model. Two stochastic modelings are examined: (i) the Master equation approach with the transition rate (i.e., λ(n, t) = λ(t)n and μ(n, t) = μ(t)n) and (ii) the nonlinear Langevin equation approach with a multiplicative noise. The exact general solution of the Master equation with arbitrary time-dependent transition rate is given. Then, the exact solution of the mean field equation for the nonlinear Langevin equation is also given. It is demonstrated that transient population dynamics is successfully identified by the generalized Logistic equation with fractional higher order nonlinear term. It is also demonstrated the necessity of introducing time-dependent transition rate in the master equation approach to incorporate the effect of nonlinearity.

**Keywords:**
Transient population dynamics,
Phase singularity,
Birth-death process,
Non-stationary Master equation,
nonlinear Langevin equation,
generalized Logistic equation.

##### 1038 Traveling Wave Solutions for the Sawada-Kotera-Kadomtsev-Petviashivili Equation and the Bogoyavlensky-Konoplechenko Equation by (G'/G)- Expansion Method

**Authors:**
Nisha Goyal,
R.K. Gupta

**Abstract:**

This paper presents a new function expansion method for finding traveling wave solutions of a nonlinear equations and calls it the G G -expansion method, given by Wang et al recently. As an application of this new method, we study the well-known Sawada-Kotera-Kadomtsev-Petviashivili equation and Bogoyavlensky-Konoplechenko equation. With two new expansions, general types of soliton solutions and periodic solutions for these two equations are obtained.

**Keywords:**
Sawada-Kotera-Kadomtsev-Petviashivili equation,
Bogoyavlensky-Konoplechenko equation,

##### 1037 Stability of Fractional Differential Equation

**Authors:**
Rabha W. Ibrahim

**Abstract:**

We study a Dirichlet boundary value problem for Lane-Emden equation involving two fractional orders. Lane-Emden equation has been widely used to describe a variety of phenomena in physics and astrophysics, including aspects of stellar structure, the thermal history of a spherical cloud of gas, isothermal gas spheres,and thermionic currents. However, ordinary Lane-Emden equation does not provide the correct description of the dynamics for systems in complex media. In order to overcome this problem and describe dynamical processes in a fractalmedium, numerous generalizations of Lane-Emden equation have been proposed. One such generalization replaces the ordinary derivative by a fractional derivative in the Lane-Emden equation. This gives rise to the fractional Lane-Emden equation with a single index. Recently, a new type of Lane-Emden equation with two different fractional orders has been introduced which provides a more flexible model for fractal processes as compared with the usual one characterized by a single index. The contraction mapping principle and Krasnoselskiis fixed point theorem are applied to prove the existence of solutions of the problem in a Banach space. Ulam-Hyers stability for iterative Cauchy fractional differential equation is defined and studied.

**Keywords:**
Fractional calculus,
fractional differential equation,
Lane-Emden equation,
Riemann-Liouville fractional operators,
Volterra integral equation.

##### 1036 Traveling Wave Solutions for Shallow Water Wave Equation by (G'/G)-Expansion Method

**Authors:**
Anjali Verma,
Ram Jiwari,
Jitender Kumar

**Abstract:**

This paper presents a new function expansion method for finding traveling wave solution of a non-linear equation and calls it the (G'/G)-expansion method. The shallow water wave equation is reduced to a non linear ordinary differential equation by using a simple transformation. As a result the traveling wave solutions of shallow water wave equation are expressed in three forms: hyperbolic solutions, trigonometric solutions and rational solutions.

**Keywords:**
Shallow water wave equation,
Exact solutions,
(G'/G) expansion method.

##### 1035 Advanced ILQ Control for Buck-Converter viaTwo-Degrees of Freedom Servo-System

**Authors:**
Sidshchadhaa Aumted,
Shuhei Shiina,
Hiroshi Takami

**Abstract:**

In this paper, we propose an advanced ILQ control for the buck-converter via two-degrees of freedom servo-system. Our presented strategy is based on Inverse Linear Quadratic (ILQ) servo-system controller without solving Riccati-s equation directly. The optimal controller of the current and voltage control system is designed. The stability and robust control are analyzed. A conscious and persistent effort has been made to improve ILQ control via two-degrees of freedom guarantees the optimal gains on the basis of polynomial pole assignment, which our results of the proposed strategy shows that the advanced ILQ control can be controlled independently the step response and the disturbance response by appending a feed-forward compensator.

**Keywords:**
Optimal voltage control,
inverse LQ design method,
second order polynomial,
two-degrees of freedom.

##### 1034 Existence of Iterative Cauchy Fractional Differential Equation

**Authors:**
Rabha W. Ibrahim

**Abstract:**

Our main aim in this paper is to use the technique of non expansive operators to more general iterative and non iterative fractional differential equations (Cauchy type ). The non integer case is taken in sense of Riemann-Liouville fractional operators. Applications are illustrated.

**Keywords:**
Fractional calculus,
fractional differential equation,
Cauchy equation,
Riemann-Liouville fractional operators,
Volterra
integral equation,
non-expansive mapping,
iterative differential equation.

##### 1033 Simulation of the Performance of Novel Nonlinear Optimal Control Technique on Two Cart-inverted Pendulum System

**Authors:**
B. Baigzadeh,
V.Nazarzehi,
H.Khaloozadeh

**Abstract:**

**Keywords:**
Nonlinear optimal control,
State dependent Riccatiequation,
Asymptotic tracking,
inverted pendulum

##### 1032 A Novel Adaptive Voltage Control Strategy for Boost Converter via Inverse LQ Servo-Control

**Authors:**
Sorawit Stapornchaisit,
Sidshchadhaa Aumted,
Hiroshi Takami

**Abstract:**

**Keywords:**
Boost converter,
optimal voltage control,
inverse LQ design method,
type-1 servo-system,
adaptive control.

##### 1031 Ginzburg-Landau Model for Curved Two-Phase Shallow Mixing Layers

**Authors:**
Irina Eglite,
Andrei A. Kolyshkin

**Abstract:**

**Keywords:**
Shallow water equations,
mixing layer,
weakly
nonlinear analysis,
Ginzburg-Landau equation

##### 1030 Lagrangian Method for Solving Unsteady Gas Equation

**Authors:**
Amir Taghavi,
kourosh Parand,
Hosein Fani

**Abstract:**

In this paper we propose, a Lagrangian method to solve unsteady gas equation which is a nonlinear ordinary differential equation on semi-infnite interval. This approach is based on Modified generalized Laguerre functions. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also compare this work with some other numerical results. The findings show that the present solution is highly accurate.

**Keywords:**
Unsteady gas equation,
Generalized Laguerre functions,
Lagrangian method,
Nonlinear ODE.

##### 1029 Extend Three-wave Method for the (3+1)-Dimensional Soliton Equation

**Authors:**
Somayeh Arbabi Mohammad-Abadi,
Maliheh Najafi

**Abstract:**

In this paper, we study (3+1)-dimensional Soliton equation. We employ the Hirota-s bilinear method to obtain the bilinear form of (3+1)-dimensional Soliton equation. Then by the idea of extended three-wave method, some exact soliton solutions including breather type solutions are presented.

**Keywords:**
Three-wave method,
(3+1)-dimensional Soliton equation,
Hirota's bilinear form.

##### 1028 Parallel Algorithm for Numerical Solution of Three-Dimensional Poisson Equation

**Authors:**
Alibek Issakhov

**Abstract:**

**Keywords:**
MPI,
OpenMP,
three dimensional Poisson equation

##### 1027 Iterative solutions to the linear matrix equation AXB + CXTD = E

**Authors:**
Yongxin Yuan,
Jiashang Jiang

**Abstract:**

**Keywords:**
matrix equation,
iterative algorithm,
parameter estimation,
minimum norm solution.