
 

 
Abstract—This paper presents a methodology based on genetic 

algorithm (GA) to tune the parameters of proportional-integral-
differential (PID) controllers utilized in the automatic voltage regulator 
(AVR) and speed governor of a brushless synchronous generator 
driven by three-stage steam turbine. The parameter tuning is 
represented as a nonlinear optimization problem solved by GA to 
minimize the integral of absolute error (IAE). The problem of integral 
windup due to physical system limitations is solved using simple anti-
windup scheme. The obtained controllers are compared to those 
designed using classical Ziegler-Nichols technique and constrained 
optimization. Results show distinct superiority of the proposed 
method. 

 
Keywords—Brushless synchronous generator, Genetic Algorithm, 

GA, Proportional-Integral-Differential control, PID control, automatic 
voltage regulator, AVR. 

I. INTRODUCTION 

N an ideal AC power plant, voltage and frequency at every 
supply point should be constant irrespective of the type and 

characteristic of the load. The quality of the supply can be 
measured by how nearly constant the voltage and frequency are 
[1]. In reality, constant voltage and frequency do not exist since 
the electric power is never in equilibrium for very long time. 
Frequent changes disturb the equilibrium so that the system is 
always in transition between steady state and transient 
conditions. Two of the major means to attenuate such 
disturbances and improve the performance are the AVR and 
speed governor [2]-[4]. The AVR controls the magnitude of the 
generator terminal voltage, while the governor regulates the 
output power and system frequency. 

The PID control is normally employed for both controllers 
due to its simplicity and ease of realization. In addition, robust 
design of the controller is possible in order to cope with 
variations of system parameters. Unlike, switching mode 
control [4], the proposed PID architecture does not require 
complex online computations to avoid chattering and actuator 
saturation problems. Besides, use of rotating bidirectional 
power converter or external rotor resistance to realize very fast 
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AVR de-excitation is not suitable for normal brushless field 
construction [2], [5]. However, optimizing the PID controller’s 
coefficients for the AVR and speed governor is difficult due to 
system nonlinearity and uncertainties in the linearized model 
parameters. Various methods exist in the literature to overcome 
such design difficulty including neural network, fuzzy logic, 
adaptive control, Zeigler-Nichols method and GA based 
automatic tuning [6]-[11]. The Zeigler-Nichols routine is 
particularly characterized with less accuracy than other 
competitive methods [10]. The GA based optimization has been 
recently used to design the PID controller parameters, utilizing 
its high capability in solving nonlinear optimization problems. 
Furthermore, GA has a shorter calculation time and better 
convergence characteristics when compared to other stochastic 
optimization algorithms [11]. 

Another practical problem of PID control is the integral 
windup, also known as integrator windup, which refers to the 
situation in the PID controller where a large change in the set-
point (or disturbance) occurs and the integral term accumulates 
a significant error that is unwound (i.e., offset by errors in the 
other direction) [12], [13]. This specific problem leads to 
excessive overshooting and might instability as a result of 
breaking the feedback loop. The integral windup particularly 
occurs due to limitation of physical systems, compared with 
ideal one, as the ideal output being physically impossible 
(process saturation). For example, the position valve of the 
speed governor, shown in Fig. 1 (b), cannot be more than fully 
open or less than fully closed. In this case, anti-windup can 
actually involve the integrator being turned off for periods of 
time until the control input becomes feasible [14]. Within 
modern digital control systems, integral windup can be 
prevented by either limiting the controller output, limiting the 
integral to produce feasible output, or by using external reset 
feedback [12]-[14]. 

This paper presents an optimal design of PID controllers for 
AVR and governor systems of synchronous generators using 
GA. The models of three-stage steam turbine and brushless 
excitation system are considered. The traditional Ziegler-
Nichols tuning method is first used to design PID controllers. 
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Then, GA is employed to obtain the controller parameters 
which minimize the IAE. Further, an integrator anti-windup 
scheme is presented during actuators saturation. Fig. 1 (a) 
shows digital realization for the proposed PID control with anti-
windup scheme where the comparator output (flag) is used to 
stop updating the integral term in case of actuator saturation. 
This has the potential to obtain larger solution set for the 
optimization problem than constrained GA and hence better 
controller tuning. Finally, time-domain analysis is carried out 
to evaluate the controller design and compare the proposed 
methodology to traditional routines. 

II. SYSTEM MODELING 

A. Steam Turbine 

In the 3-stage steam power plant, shown in Fig. 1 (b), the 
primary energy is converted into thermal energy by a boiler. 
The boiler generates the steam, which enters the three-stage 
turbine at the high-pressure turbine section (HPT) after passing 
a high-pressure control valve (HPCV). The partly expanded 
steam is transferred to the reheater passing the intermediate-
pressure control valve (IPCV), and reaches the intermediate-

pressure turbine section (IPT). Then, the steam is expanded into 
the low-pressure turbine section (LPT). The exhaust steam of 
the LPT part condenses in the following condenser. Finally, 
feed-water pumps supply the accumulating condensate to the 
boiler. The output power passes on to the electrical grid by the 
generator, while the control deviation of actual and reference 
speed is carried out by the speed controller. The resulting 
controller output acts on the control valves by using position 
actuators. Single-mass, linearized model for 3-stage steam 
turbine is shown in Fig. 2, where it is assumed proper 
mechanical coupler and choice of the shaft stiffness and turbine 
inertia are used to provide drive train isolation and damping of 
torque pulsations [15], [16]. The output power is the result of 
the mass flow rate, thermal gradient and internal efficiency. 
Each stage of the turbine blades is shown as a first order system 
with time constants THP, TIP, and TLP. The outputs of the 
three turbine sections are summed up to the turbine power 
corresponding to the power proportions KHP, KIP and KLP. 
Every change of the turbine power, PT, and the generator 
power, PG, is transferred to speed change with acceleration 
time constant Ta. The transfer function representing each 
element could be depicted as in the block diagram of Fig. 2. 

 

 

Fig. 1 Digital PID control with anti-windup (a) and (b) block diagram of a 3-stage steam turbine 
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Fig. 2 Modeling of a three-stage steam turbine 
 

 

Fig. 3 The brushless excitation system in turbo-generators 
 

 

Fig. 4 An AVR block diagram 
 

B. Automatic Voltage Regulator 

To ensure a stable terminal voltage of the synchronous 
generators at the generating stations, AVRs are used to adjust 
the field voltage depending upon the load variations. In 
conventional schemes, the field voltage control is achieved by 

means of a thyristor-based rectifier. The firing angle of the 
rectifier is adjusted depending upon the field voltage 
requirement, which in turn controls the terminal voltage of the 
synchronous generator. 

Nowadays, the brushless excitation system is commonly 
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used for synchronous machines due to absence of slip rings and 
lower maintenance cost. It employs a three-phase pilot 
(sub)exciter having a revolving field with permanent-magnet 
poles. The three-phase AC generated by the pilot exciter is 
rectified through a controlled rectifier before being applied to 
the stator field winding of the main exciter. The three-phase AC 
induced in the rotary armature of the main exciter is rectified by 
a rotating diode bridge and fed to the field winding of the main 
generator rotor through a DC lead. The system is shown 
schematically in Fig. 3. It is worth mentioning that the brushless 
structure is often considered more complicated for control since 
the exciter adds considerable phase lag during de-excitation 
state. This is because the brushless excitation has only positive 
field forcing capability [21]. The role of an AVR is to keep 
constant the output voltage of the generator in a specified range. 
Basically, the AVR consists of amplifier, exciter, generator, and 
sensor (potential transformer + transducer). Fig. 4 shows a 
linearized model for AVR controller’s tuning where the transfer 
function of each system component is assumed to have bounded 
uncertainty limits [4], [17], [21]. To design the parameters of 
the PID controller, the system response is modeled in the 
MATLAB/Simulink platform. The controller parameters are 
determined using the traditional Ziegler-Nicholas method and 
proposed GA routine. 

III.  TUNING METHODS FOR PID CONTROLLER 

The PID controller represents one of the most common 
structures due to the inherent simplicity and ease of 
implementation. There are many tuning formulas for PID 
control for processes with transient responses. The Ziegler-
Nichols step response method is based on the basic features of 
the step response, and is investigated from the view point of 
robust loop shaping [10]. The results are insight into the 
properties of PID control and simple tuning rules that give 
robust performance for processes with essentially monotone 
step responses. On the other hand, GA is an effective method 
for nonlinear optimization, which could be used to optimize the 
set point and load disturbance response for a batch of test 
processes controlled by PID controllers [18], [19]. 

A. Ziegler-Nichols Method 

The proportional control action is first computed in order to 
obtain a critical value (Kcr) for the proportional gain (Kp); the 
gain is increased till the output first exhausts sustained 
oscillations. Then, the critical gain (Kcr) and the corresponding 
period (Pcr) are used to set values of the PID gains (Kp, Ki, and 
Kd) according to the following formulae [10], [13]: 

 

, ,      (1) 

 
Compared to GA, the Zeigler-Nichols method is regarded as 

an aggressive tuning method with low accuracy.  

B. The GA Algorithm 

The GA routine determines the controller parameters based 
on minimizing some error function according to the following 

algorithm. Let the PID controller be implemented as follows 
[18], [19]: 

 

                        (2) 

 

                                    (3) 

 
where, u = controller output, yr = set point, y = process output, 
Kp = proportional gain, Ki = integral gain, Kd = derivative gain, 
and e = error, Umin< u<Umax given that, Umin = 0 and Umax = 1 
pu. 

In case of actuator saturation, an anti-windup flag is activated 
and used to stop updating the integral part. The controller output 
is modified according to the following selection scheme 

 

 
 

(4) 
 
 
 
 

 
The closed-loop transfer function is given by  
 

              (5) 

 
There are various performance indices that could be 

optimized such as; integral square of error (ISE), integral of 
absolute error (IAE), integral time of absolute error (ITAE), and 
integral time of square error (ITSE). The IAE is given as 
follows: 

 

                  (6) 

 
Such index is commonly used for computer simulation 

studies since it is simple to be computed and yields moderate 
performance between ISE and ITAE in terms of maximum 
overshoot, rise-time, and settling-time [20]. The PID controller 
parameters are designed using GA such that J is minimized. The 
objective is to search (KP, Ki, Kd) globally such that J is 
minimized. Thus, an individual that has lower J should be 
assigned a large fitness value. Then, the GA inherently 
generates better offspring to improve the fitness and avoids 
local minima. Therefore, a better PID controller could be 
obtained by better fitness. Finally, the fitness function is defined 
in (7). The one added to the denominator of the function is 
obviously to avoid division by zero.  

 

            (7) 
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with the bounded-uncertainty limits during GA search routine, 
the system sensitivity constraint will be included inherently in 
the solution without additional complex computations.  In [19], 
the optimization problem is solved with a measure in the fitness 
function to exclude cases of actuator saturation. Here, the 
occurrence of actuator saturation is permitted by using integral 
anti-windup scheme, as shown in Fig. 4, under either excitation 
system saturation or large voltage disturbances. Also, anti-
windup measure is applied to the speed governor control as 
shown in Fig. 2. This has the potential to obtain larger solution 
set for the optimization problem and better controller tuning. 
Hence, enhanced dynamic response could be realized while 
maintaining good robustness against parameters variations. 

IV. SIMULATION RESULTS 

Comparisons of the two design approaches are carried out 
with respect to step change in the reference input command. 
Evaluation of the control performance under system parameters 
variation is also performed. 

A. Speed Governor Results 
TABLE I  

PARAMETERS OF THE STEAM TURBINES USED IN SIMULATION 

Parameter System1 System2 

THPCV 0.3 0.35 

KHP 19.3 23.16 

THP 0.3 0.3 

TR 6.5 7 

KR 2 2.5 

KIPCV 0.2 0.26 

TIPCV 0.2 0.3 

TIP 0.4 0.5 

KIP 34.929 28 

TLP 0.45 0.5 

KLP 60 72 

Ta 100 50 

K 0.2 0.3 

 

 

Fig. 5 Turbine Power tracking errors using different controllers: 
Ziegler Nichols: System1 (series1) and System2 (series2). Proposed 

GA: System1 (series3) and System2 (series4) 
 
In order to compare the quality of the proposed GA routine 

with the traditional method, two sets of system parameters are 
assumed as given in Table I. To reduce simulation time, step 

response of the turbine power is considered and the tracking 
errors are shown in Fig. 5 for different controllers. The plots 
signify much better response for both systems using the 
proposed controller in terms of the damping ratio, maximum 
overshoot, and settling time. Such conclusion is supported by 
the results given in Table II. The findings of the comparison 
study indicate that the proposed controller always outperforms 
the traditional controller. 

B. AVR Results 

For the purpose of comparing the two PID controllers 
developed for AVR, parameters for two different systems are 
described in Table III. The step responses of the generator 
output voltage of the two systems are shown in Fig. 6 with both 
traditional and proposed controllers. The simulation test 
represents a voltage recovery after severe short circuit fault and 
depicts an improved response for both systems upon using the 
proposed controller. Results of the comparison process are 
quantified in Table IV, which shows much better performance 
for the GA-based controller on both systems than the Zeigler-
Nichols controller. Further, the proposed control design is 
compared to constrained GA as in [19], where the actuator 
saturation is prohibited via fitness function, and the AVR 
results are depicted in Table V for both cases. It is evident that 
considering the proposed anti-windup scheme in case of 
actuator saturation as a feasible solution for the optimization 
problem can yield faster dynamic response in terms of settling 
and rise times meanwhile obtaining acceptable overshoot and 
steady-state errors. The effectiveness of the proposed integrator 
anti-windup is tested in case of AVR step response. Fig. 7 
shows the AVR tracking errors with (blue curve) and without 
(red curve) integrator anti-windup. The proposed measure can 
maintain the closed loop stability with a fast positive field 
forcing capability. 

 

 

Fig. 6 Step response of the AVR using different controllers: Ziegler-
Nichols: System1 (--) and System2 (*-). Proposed GA: System1 (o) 

and System2 (-) 
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TABLE II 
RESPONSE COMPARISON OF THE TWO SYSTEMS USING DIFFERENT 

CONTROLLERS 

Index 
System1 System2 

Zeigler GA Zeigler GA 

% Max. overshoot 29 4 32 4 

Settling time (S) 6 Sec. 3.9 8.7 2.4 

Rise time (S) 1.7 1.3 1.4 1.25

%Abs. error 1.3 0.21 1.4 0.27

 
TABLE III 

PARAMETERS OF THE TWO AVR SYSTEMS USED IN SIMULATION 

Parameter System1 System2 

KA 10 40 

TA 0.1 0.01 

KE 1 2 

TE 0.1 0.4 

KG 0.7 1 

TG 1 2 

KR 0.9 1.1 

TR 0.1 0.01 

 
TABLE IV 

RESPONSE COMPARISON OF THE AVR SYSTEMS USING ZEIGLER AND 

PROPOSED CONTROLLER 

Index 
System1 System2 

Zeigler GA Zeigler GA 

% Max. overshoot 20 2.7 21 2.8 

Settling time (S) 4.2 1 4.4 1 

Rise-time (S) 0.94 0.46 1 0.45

% Abs. error 0.9 0.08 0.95 0.08

 
TABLE V 

RESPONSE COMPARISON OF AVR SYSTEMS USING CONSTRAINED GA [19] 

AND PROPOSED CONTROLLER 

Index 
System1 System2 

GA GA [19] GA GA [19]

% Max. overshoot 2.7 - 2.8 - 

Settling time (S) 1 1.81 1 1.89 

Rise-time (S) 0.46 0.628 0.45 0.71 

% Abs. error 0.08 0.07 0.08 0.065 

 

 

Fig. 7 AVR tracking error with (series1) and without (series2) 
integrator anti-windup 

V. CONCLUSION 

The paper presents a robust design technique for the PID 
controllers employed in steam turbines and AVRs of the 

brushless synchronous generator. The technique is based on 
GA, which determines the controller parameters to minimize 
ITAE and employs a simple measure against integrator windup. 
The technique is successfully applied to 3-stage turbine and 
brushless AVR systems. The obtained controllers are compared 
to those obtained through the traditional Zeigler-Nichols 
method and constrained GA optimization. Comparisons show 
better dynamic performance and indicate the effectiveness of 
the developed algorithm in terms of robustness against changes 
in system parameters, actuator physical limitations, and large 
disturbances while achieving enhanced dynamic response. 
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