Search results for: Fuzzy rule based system (FRBS).
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16405

Search results for: Fuzzy rule based system (FRBS).

16405 Association Rule and Decision Tree based Methodsfor Fuzzy Rule Base Generation

Authors: Ferenc Peter Pach, Janos Abonyi

Abstract:

This paper focuses on the data-driven generation of fuzzy IF...THEN rules. The resulted fuzzy rule base can be applied to build a classifier, a model used for prediction, or it can be applied to form a decision support system. Among the wide range of possible approaches, the decision tree and the association rule based algorithms are overviewed, and two new approaches are presented based on the a priori fuzzy clustering based partitioning of the continuous input variables. An application study is also presented, where the developed methods are tested on the well known Wisconsin Breast Cancer classification problem.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2237
16404 A Diagnostic Fuzzy Rule-Based System for Congenital Heart Disease

Authors: Ersin Kaya, Bulent Oran, Ahmet Arslan

Abstract:

In this study, fuzzy rule-based classifier is used for the diagnosis of congenital heart disease. Congenital heart diseases are defined as structural or functional heart disease. Medical data sets were obtained from Pediatric Cardiology Department at Selcuk University, from years 2000 to 2003. Firstly, fuzzy rules were generated by using medical data. Then the weights of fuzzy rules were calculated. Two different reasoning methods as “weighted vote method" and “singles winner method" were used in this study. The results of fuzzy classifiers were compared.

Keywords: Congenital heart disease, Fuzzy rule-basedclassifiers, Classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
16403 Fuzzy Rules Generation and Extraction from Support Vector Machine Based on Kernel Function Firing Signals

Authors: Prasan Pitiranggon, Nunthika Benjathepanun, Somsri Banditvilai, Veera Boonjing

Abstract:

Our study proposes an alternative method in building Fuzzy Rule-Based System (FRB) from Support Vector Machine (SVM). The first set of fuzzy IF-THEN rules is obtained through an equivalence of the SVM decision network and the zero-ordered Sugeno FRB type of the Adaptive Network Fuzzy Inference System (ANFIS). The second set of rules is generated by combining the first set based on strength of firing signals of support vectors using Gaussian kernel. The final set of rules is then obtained from the second set through input scatter partitioning. A distinctive advantage of our method is the guarantee that the number of final fuzzy IFTHEN rules is not more than the number of support vectors in the trained SVM. The final FRB system obtained is capable of performing classification with results comparable to its SVM counterpart, but it has an advantage over the black-boxed SVM in that it may reveal human comprehensible patterns.

Keywords: Fuzzy Rule Base, Rule Extraction, Rule Generation, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
16402 Rule-Based Fuzzy Logic Controller with Adaptable Reference

Authors: Sheroz Khan, I. Adam, A. H. M. Zahirul Alam, Mohd Rafiqul Islam, Othman O. Khalifa

Abstract:

This paper attempts to model and design a simple fuzzy logic controller with Variable Reference. The Variable Reference (VR) is featured as an adaptability element which is obtained from two known variables – desired system-input and actual system-output. A simple fuzzy rule-based technique is simulated to show how the actual system-input is gradually tuned in to a value that closely matches the desired input. The designed controller is implemented and verified on a simple heater which is controlled by PIC Microcontroller harnessed by a code developed in embedded C. The output response of the PIC-controlled heater is analyzed and compared to the performances by conventional fuzzy logic controllers. The novelty of this work lies in the fact that it gives better performance by using less number of rules compared to conventional fuzzy logic controllers.

Keywords: Fuzzy logic controller, Variable reference, Adaptability, Rule-based.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1264
16401 FWM Aware Fuzzy Dynamic Routing and Wavelength Assignment in Transparent Optical Networks

Authors: Debajyoti Mishra, Urmila Bhanja

Abstract:

In this paper, a novel fuzzy approach is developed while solving the Dynamic Routing and Wavelength Assignment (DRWA) problem in optical networks with Wavelength Division Multiplexing (WDM). In this work, the effect of nonlinear and linear impairments such as Four Wave Mixing (FWM) and amplifier spontaneous emission (ASE) noise are incorporated respectively. The novel algorithm incorporates fuzzy logic controller (FLC) to reduce the effect of FWM noise and ASE noise on a requested lightpath referred in this work as FWM aware fuzzy dynamic routing and wavelength assignment algorithm. The FWM crosstalk products and the static FWM noise power per link are pre computed in order to reduce the set up time of a requested lightpath, and stored in an offline database. These are retrieved during the setting up of a lightpath and evaluated online taking the dynamic parameters like cost of the links into consideration.

Keywords: Amplifier spontaneous emission (ASE), Dynamic routing and wavelength assignment, Four wave mixing (FWM), Fuzzy rule based system (FRBS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
16400 A Novel Fuzzy Technique for Image Noise Reduction

Authors: Hamed Vahdat Nejad, Hameed Reza Pourreza, Hasan Ebrahimi

Abstract:

A new fuzzy filter is presented for noise reduction of images corrupted with additive noise. The filter consists of two stages. In the first stage, all the pixels of image are processed for determining noisy pixels. For this, a fuzzy rule based system associates a degree to each pixel. The degree of a pixel is a real number in the range [0,1], which denotes a probability that the pixel is not considered as a noisy pixel. In the second stage, another fuzzy rule based system is employed. It uses the output of the previous fuzzy system to perform fuzzy smoothing by weighting the contributions of neighboring pixel values. Experimental results are obtained to show the feasibility of the proposed filter. These results are also compared to other filters by numerical measure and visual inspection.

Keywords: Additive noise, Fuzzy logic, Image processing, Noise reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
16399 Using Swarm Intelligence for Improving Accuracy of Fuzzy Classifiers

Authors: Hassan M. Elragal

Abstract:

This paper discusses a method for improving accuracy of fuzzy-rule-based classifiers using particle swarm optimization (PSO). Two different fuzzy classifiers are considered and optimized. The first classifier is based on Mamdani fuzzy inference system (M_PSO fuzzy classifier). The second classifier is based on Takagi- Sugeno fuzzy inference system (TS_PSO fuzzy classifier). The parameters of the proposed fuzzy classifiers including premise (antecedent) parameters, consequent parameters and structure of fuzzy rules are optimized using PSO. Experimental results show that higher classification accuracy can be obtained with a lower number of fuzzy rules by using the proposed PSO fuzzy classifiers. The performances of M_PSO and TS_PSO fuzzy classifiers are compared to other fuzzy based classifiers

Keywords: Fuzzy classifier, Optimization of fuzzy systemparameters, Particle swarm optimization, Pattern classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2290
16398 Social, Group and Individual Mind extracted from Rule Bases of Multiple Agents

Authors: P. Cermak

Abstract:

This paper shows possibility of extraction Social, Group and Individual Mind from Multiple Agents Rule Bases. Types those Rule bases are selected as two fuzzy systems, namely Mambdani and Takagi-Sugeno fuzzy system. Their rule bases are describing (modeling) agent behavior. Modifying of agent behavior in the time varying environment will be provided by learning fuzzyneural networks and optimization of their parameters with using genetic algorithms in development system FUZNET. Finally, extraction Social, Group and Individual Mind from Multiple Agents Rule Bases are provided by Cognitive analysis and Matching criterion.

Keywords: Mind, Multi-agent system, Cognitive analysis, Fuzzy system, Neural network, Genetic algorithm, Rule base.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200
16397 Simulating and Forecasting Qualitative Marcoeconomic Models Using Rule-Based Fuzzy Cognitive Maps

Authors: Spiros Mazarakis, George Matzavinos, Peter P. Groumpos

Abstract:

Economic models are complex dynamic systems with a lot of uncertainties and fuzzy data. Conventional modeling approaches using well known methods and techniques cannot provide realistic and satisfactory answers to today-s challenging economic problems. Qualitative modeling using fuzzy logic and intelligent system theories can be used to model macroeconomic models. Fuzzy Cognitive maps (FCM) is a new method been used to model the dynamic behavior of complex systems. For the first time FCMs and the Mamdani Model of Intelligent control is used to model macroeconomic models. This new model is referred as the Mamdani Rule-Based Fuzzy Cognitive Map (MBFCM) and provides the academic and research community with a new promising integrated advanced computational model. A new economic model is developed for a qualitative approach to Macroeconomic modeling. Fuzzy Controllers for such models are designed. Simulation results for an economic scenario are provided and extensively discussed

Keywords: Macroeconomic Models, Mamdani Rule Based- FCMs(MBFCMs), Qualitative and Dynamics System, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
16396 Evaluation of a Hybrid Knowledge-Based System Using Fuzzy Approach

Authors: Kamalendu Pal

Abstract:

This paper describes the main features of a knowledge-based system evaluation method. System evaluation is placed in the context of a hybrid legal decision-support system, Advisory Support for Home Settlement in Divorce (ASHSD). Legal knowledge for ASHSD is represented in two forms, as rules and previously decided cases. Besides distinguishing the two different forms of knowledge representation, the paper outlines the actual use of these forms in a computational framework that is designed to generate a plausible solution for a given case, by using rule-based reasoning (RBR) and case-based reasoning (CBR) in an integrated environment. The nature of suitability assessment of a solution has been considered as a multiple criteria decision-making process in ASHAD evaluation. The evaluation was performed by a combination of discussions and questionnaires with different user groups. The answers to questionnaires used in this evaluations method have been measured as a fuzzy linguistic term. The finding suggests that fuzzy linguistic evaluation is practical and meaningful in knowledge-based system development purpose. 

Keywords: Case-based reasoning, decision-support system, fuzzy linguistic term, rule-based reasoning, system evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
16395 Navigation of Multiple Mobile Robots using Rule-based-Neuro-Fuzzy Technique

Authors: Saroj Kumar Pradhan, Dayal Ramakrushna Parhi, Anup Kumar Panda

Abstract:

This paper deals with motion planning of multiple mobile robots. Mobile robots working together to achieve several objectives have many advantages over single robot system. However, the planning and coordination between the mobile robots is extremely difficult. In the present investigation rule-based and rulebased- neuro-fuzzy techniques are analyzed for multiple mobile robots navigation in an unknown or partially known environment. The final aims of the robots are to reach some pre-defined goals. Based upon a reference motion, direction; distances between the robots and obstacles; and distances between the robots and targets; different types of rules are taken heuristically and refined later to find the steering angle. The control system combines a repelling influence related to the distance between robots and nearby obstacles and with an attracting influence between the robots and targets. Then a hybrid rule-based-neuro-fuzzy technique is analysed to find the steering angle of the robots. Simulation results show that the proposed rulebased- neuro-fuzzy technique can improve navigation performance in complex and unknown environments compared to this simple rulebased technique.

Keywords: Mobile robots, Navigation, Neuro-fuzzy, Obstacle avoidance, Rule-based, Target seeking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
16394 Fuzzy Power Controller Design for Purdue University Research Reactor-1

Authors: Oktavian Muhammad Rizki, Appiah Rita, Lastres Oscar, Miller True, Chapman Alec, Tsoukalas Lefteri H.

Abstract:

The Purdue University Research Reactor-1 (PUR-1) is a 10 kWth pool-type research reactor located at Purdue University’s West Lafayette campus. The reactor was recently upgraded to use entirely digital instrumentation and control systems. However, currently, there is no automated control system to regulate the power in the reactor. We propose a fuzzy logic controller as a form of digital twin to complement the existing digital instrumentation system to monitor and stabilize power control using existing experimental data. This work assesses the feasibility of a power controller based on a Fuzzy Rule-Based System (FRBS) by modelling and simulation with a MATLAB algorithm. The controller uses power error and reactor period as inputs and generates reactivity insertion as output. The reactivity insertion is then converted to control rod height using a logistic function based on information from the recorded experimental reactor control rod data. To test the capability of the proposed fuzzy controller, a point-kinetic reactor model is utilized based on the actual PUR-1 operation conditions and a Monte Carlo N-Particle simulation result of the core to numerically compute the neutronics parameters of reactor behavior. The Point Kinetic Equation (PKE) was employed to model dynamic characteristics of the research reactor since it explains the interactions between the spatial and time varying input and output variables efficiently. The controller is demonstrated computationally using various cases: startup, power maneuver, and shutdown. From the test results, it can be proved that the implemented fuzzy controller can satisfactorily regulate the reactor power to follow demand power without compromising nuclear safety measures.

Keywords: Fuzzy logic controller, power controller, reactivity, research reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 331
16393 Hybrid GA Tuned RBF Based Neuro-Fuzzy Controller for Robotic Manipulator

Authors: Sufian Ashraf Mazhari, Surendra Kumar

Abstract:

In this paper performance of Puma 560 manipulator is being compared for hybrid gradient descent and least square method learning based ANFIS controller with hybrid Genetic Algorithm and Generalized Pattern Search tuned radial basis function based Neuro-Fuzzy controller. ANFIS which is based on Takagi Sugeno type Fuzzy controller needs prior knowledge of rule base while in radial basis function based Neuro-Fuzzy rule base knowledge is not required. Hybrid Genetic Algorithm with generalized Pattern Search is used for tuning weights of radial basis function based Neuro- fuzzy controller. All the controllers are checked for butterfly trajectory tracking and results in the form of Cartesian and joint space errors are being compared. ANFIS based controller is showing better performance compared to Radial Basis Function based Neuro-Fuzzy Controller but rule base independency of RBF based Neuro-Fuzzy gives it an edge over ANFIS

Keywords: Neuro-Fuzzy, Robotic Control, RBFNF, ANFIS, Hybrid GA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
16392 Discovery of Fuzzy Censored Production Rules from Large Set of Discovered Fuzzy if then Rules

Authors: Tamanna Siddiqui, M. Afshar Alam

Abstract:

Censored Production Rule is an extension of standard production rule, which is concerned with problems of reasoning with incomplete information, subject to resource constraints and problem of reasoning efficiently with exceptions. A CPR has a form: IF A (Condition) THEN B (Action) UNLESS C (Censor), Where C is the exception condition. Fuzzy CPR are obtained by augmenting ordinary fuzzy production rule “If X is A then Y is B with an exception condition and are written in the form “If X is A then Y is B Unless Z is C. Such rules are employed in situation in which the fuzzy conditional statement “If X is A then Y is B" holds frequently and the exception condition “Z is C" holds rarely. Thus “If X is A then Y is B" part of the fuzzy CPR express important information while the unless part acts only as a switch that changes the polarity of “Y is B" to “Y is not B" when the assertion “Z is C" holds. The proposed approach is an attempt to discover fuzzy censored production rules from set of discovered fuzzy if then rules in the form: A(X) ÔçÆ B(Y) || C(Z).

Keywords: Uncertainty Quantification, Fuzzy if then rules, Fuzzy Censored Production Rules, Learning algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
16391 A Neurofuzzy Learning and its Application to Control System

Authors: Seema Chopra, R. Mitra, Vijay Kumar

Abstract:

A neurofuzzy approach for a given set of input-output training data is proposed in two phases. Firstly, the data set is partitioned automatically into a set of clusters. Then a fuzzy if-then rule is extracted from each cluster to form a fuzzy rule base. Secondly, a fuzzy neural network is constructed accordingly and parameters are tuned to increase the precision of the fuzzy rule base. This network is able to learn and optimize the rule base of a Sugeno like Fuzzy inference system using Hybrid learning algorithm, which combines gradient descent, and least mean square algorithm. This proposed neurofuzzy system has the advantage of determining the number of rules automatically and also reduce the number of rules, decrease computational time, learns faster and consumes less memory. The authors also investigate that how neurofuzzy techniques can be applied in the area of control theory to design a fuzzy controller for linear and nonlinear dynamic systems modelling from a set of input/output data. The simulation analysis on a wide range of processes, to identify nonlinear components on-linely in a control system and a benchmark problem involving the prediction of a chaotic time series is carried out. Furthermore, the well-known examples of linear and nonlinear systems are also simulated under the Matlab/Simulink environment. The above combination is also illustrated in modeling the relationship between automobile trips and demographic factors.

Keywords: Fuzzy control, neuro-fuzzy techniques, fuzzy subtractive clustering, extraction of rules, and optimization of membership functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2550
16390 A New Load Frequency Controller based on Parallel Fuzzy PI with Conventional PD (FPI-PD)

Authors: Aqeel S. Jaber, Abu Zaharin Ahmad, Ahmed N. Abdalla

Abstract:

The artificial intelligent controller in power system plays as most important rule for many applications such as system operation and its control specially Load Frequency Controller (LFC). The main objective of LFC is to keep the frequency and tie-line power close to their decidable bounds in case of disturbance. In this paper, parallel fuzzy PI adaptive with conventional PD technique for Load Frequency Control system was proposed. PSO optimization method used to optimize both of scale fuzzy PI and tuning of PD. Two equal interconnected power system areas were used as a test system. Simulation results show the effectiveness of the proposed controller compared with different PID and classical fuzzy PI controllers in terms of speed response and damping frequency.

Keywords: Load frequency control, PSO, fuzzy control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982
16389 Learning Algorithms for Fuzzy Inference Systems Composed of Double- and Single-Input Rule Modules

Authors: Hirofumi Miyajima, Kazuya Kishida, Noritaka Shigei, Hiromi Miyajima

Abstract:

Most of self-tuning fuzzy systems, which are automatically constructed from learning data, are based on the steepest descent method (SDM). However, this approach often requires a large convergence time and gets stuck into a shallow local minimum. One of its solutions is to use fuzzy rule modules with a small number of inputs such as DIRMs (Double-Input Rule Modules) and SIRMs (Single-Input Rule Modules). In this paper, we consider a (generalized) DIRMs model composed of double and single-input rule modules. Further, in order to reduce the redundant modules for the (generalized) DIRMs model, pruning and generative learning algorithms for the model are suggested. In order to show the effectiveness of them, numerical simulations for function approximation, Box-Jenkins and obstacle avoidance problems are performed.

Keywords: Box-Jenkins’s problem, Double-input rule module, Fuzzy inference model, Obstacle avoidance, Single-input rule module.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909
16388 Auto Regressive Tree Modeling for Parametric Optimization in Fuzzy Logic Control System

Authors: Arshia Azam, J. Amarnath, Ch. D. V. Paradesi Rao

Abstract:

The advantage of solving the complex nonlinear problems by utilizing fuzzy logic methodologies is that the experience or expert-s knowledge described as a fuzzy rule base can be directly embedded into the systems for dealing with the problems. The current limitation of appropriate and automated designing of fuzzy controllers are focused in this paper. The structure discovery and parameter adjustment of the Branched T-S fuzzy model is addressed by a hybrid technique of type constrained sparse tree algorithms. The simulation result for different system model is evaluated and the identification error is observed to be minimum.

Keywords: Fuzzy logic, branch T-S fuzzy model, tree modeling, complex nonlinear system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1349
16387 Hybrid Artificial Bee Colony and Least Squares Method for Rule-Based Systems Learning

Authors: Ahcene Habbi, Yassine Boudouaoui

Abstract:

This paper deals with the problem of automatic rule generation for fuzzy systems design. The proposed approach is based on hybrid artificial bee colony (ABC) optimization and weighted least squares (LS) method and aims to find the structure and parameters of fuzzy systems simultaneously. More precisely, two ABC based fuzzy modeling strategies are presented and compared. The first strategy uses global optimization to learn fuzzy models, the second one hybridizes ABC and weighted least squares estimate method. The performances of the proposed ABC and ABC-LS fuzzy modeling strategies are evaluated on complex modeling problems and compared to other advanced modeling methods.

Keywords: Automatic design, learning, fuzzy rules, hybrid, swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102
16386 Fuzzy Expert System Design for Determining Wearing Properties of Nitrided and Non Nitrided Steel

Authors: Serafettin Ekinci, Kursat Zuhtuogullari

Abstract:

This paper proposes a Fuzzy Expert System design to determine the wearing properties of nitrided and non nitrided steel. The proposed Fuzzy Expert System approach helps the user and the manufacturer to forecast the wearing properties of nitrided and non nitrided steel under specified laboratory conditions. Surfaces of the engineering components are often nitrided for improving wear, corosion, fatigue specifications. A major property of nitriding process is reducing distortion and wearing of the metalic alloys. A Fuzzy Expert System was developed for determining the wearing and durability properties of nitrided and non nitrided steels that were tested under different loads and different sliding speeds in the laboratory conditions.

Keywords: Fuzzy Expert System Design, Rule Based Systems, Fatigue, Corrosion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
16385 A New Fuzzy DSS/ES for Stock Portfolio Selection using Technical and Fundamental Approaches in Parallel

Authors: H. Zarei, M. H. Fazel Zarandi, M. Karbasian

Abstract:

A Decision Support System/Expert System for stock portfolio selection presented where at first step, both technical and fundamental data used to estimate technical and fundamental return and risk (1st phase); Then, the estimated values are aggregated with the investor preferences (2nd phase) to produce convenient stock portfolio. In the 1st phase, there are two expert systems, each of which is responsible for technical or fundamental estimation. In the technical expert system, for each stock, twenty seven candidates are identified and with using rough sets-based clustering method (RC) the effective variables have been selected. Next, for each stock two fuzzy rulebases are developed with fuzzy C-Mean method and Takai-Sugeno- Kang (TSK) approach; one for return estimation and the other for risk. Thereafter, the parameters of the rule-bases are tuned with backpropagation method. In parallel, for fundamental expert systems, fuzzy rule-bases have been identified in the form of “IF-THEN" rules through brainstorming with the stock market experts and the input data have been derived from financial statements; as a result two fuzzy rule-bases have been generated for all the stocks, one for return and the other for risk. In the 2nd phase, user preferences represented by four criteria and are obtained by questionnaire. Using an expert system, four estimated values of return and risk have been aggregated with the respective values of user preference. At last, a fuzzy rule base having four rules, treats these values and produce a ranking score for each stock which will lead to a satisfactory portfolio for the user. The stocks of six manufacturing companies and the period of 2003-2006 selected for data gathering.

Keywords: Stock Portfolio Selection, Fuzzy Rule-Base ExpertSystems, Financial Decision Support Systems, Technical Analysis, Fundamental Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
16384 Some Application of Random Fuzzy Queueing System Based On Fuzzy Simulation

Authors: Behrouz Fathi-Vajargah, Sara Ghasemalipour

Abstract:

This paper studies a random fuzzy queueing system that the interarrival times of customers arriving at the server and the service times are independent and identically distributed random fuzzy variables. We match the random fuzzy queueing system with the random fuzzy alternating renewal process and we do not use from α-pessimistic and α-optimistic values to estimate the average chance of the event ”random fuzzy queueing system is busy at time t”, we employ the fuzzy simulation method in practical applications. Some theorem is proved and finally we solve a numerical example with fuzzy simulation method.

Keywords: Random fuzzy variables, Fuzzy simulation, Queueing system, Interarrival times.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029
16383 Recurrent Neural Network Based Fuzzy Inference System for Identification and Control of Dynamic Plants

Authors: Rahib Hidayat Abiyev

Abstract:

This paper presents the development of recurrent neural network based fuzzy inference system for identification and control of dynamic nonlinear plant. The structure and algorithms of fuzzy system based on recurrent neural network are described. To train unknown parameters of the system the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The neuro-fuzzy system is used for the identification and control of nonlinear dynamic plant. The simulation results of identification and control systems based on recurrent neuro-fuzzy network are compared with the simulation results of other neural systems. It is found that the recurrent neuro-fuzzy based system has better performance than the others.

Keywords: Fuzzy logic, neural network, neuro-fuzzy system, control system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2333
16382 Improving Convergence of Parameter Tuning Process of the Additive Fuzzy System by New Learning Strategy

Authors: Thi Nguyen, Lee Gordon-Brown, Jim Peterson, Peter Wheeler

Abstract:

An additive fuzzy system comprising m rules with n inputs and p outputs in each rule has at least t m(2n + 2 p + 1) parameters needing to be tuned. The system consists of a large number of if-then fuzzy rules and takes a long time to tune its parameters especially in the case of a large amount of training data samples. In this paper, a new learning strategy is investigated to cope with this obstacle. Parameters that tend toward constant values at the learning process are initially fixed and they are not tuned till the end of the learning time. Experiments based on applications of the additive fuzzy system in function approximation demonstrate that the proposed approach reduces the learning time and hence improves convergence speed considerably.

Keywords: Additive fuzzy system, improving convergence, parameter learning process, unsupervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
16381 On The Comparison of Fuzzy Logic and State Space Averaging based Sliding Control Methods Applied onan Arc Welding Machine

Authors: İres İskender, Ahmet Karaarslan

Abstract:

In this study, the performance of a high-frequency arc welding machine including a two-switch inverter is analyzed. The control of the system is achieved using two different control techniques i- fuzzy logic control (FLC) ii- state space averaging based sliding control. Fuzzy logic control does not need accurate mathematical model of a plant and can be used in nonlinear applications. The second method needs the mathematical model of the system. In this method the state space equations of the system are derived for two different “on" and “off" states of the switches. The derived state equations are combined with the sliding control rule considering the duty-cycle of the converter. The performance of the system is analyzed by simulating the system using SIMULINK tool box of MATLAB. The simulation results show that fuzzy logic controller is more robust and less sensitive to parameter variations.

Keywords: Fuzzy logic, arc welding, sliding state space control, PWM, current control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
16380 Portfolio Management: A Fuzzy Set Based Approach to Monitoring Size to Maximize Return and Minimize Risk

Authors: Margaret F. Shipley

Abstract:

Fuzzy logic can be used when knowledge is incomplete or when ambiguity of data exists. The purpose of this paper is to propose a proactive fuzzy set- based model for reacting to the risk inherent in investment activities relative to a complete view of portfolio management. Fuzzy rules are given where, depending on the antecedents, the portfolio size may be slightly or significantly decreased or increased. The decision maker considers acceptable bounds on the proportion of acceptable risk and return. The Fuzzy Controller model allows learning to be achieved as 1) the firing strength of each rule is measured, 2) fuzzy output allows rules to be updated, and 3) new actions are recommended as the system continues to loop. An extension is given to the fuzzy controller that evaluates potential financial loss before adjusting the portfolio. An application is presented that illustrates the algorithm and extension developed in the paper.

Keywords: Portfolio Management, Financial Market Monitoring, Fuzzy Controller, Fuzzy Logic,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
16379 Improved BEENISH Protocol for Wireless Sensor Networks Based Upon Fuzzy Inference System

Authors: Rishabh Sharma, Renu Vig, Neeraj Sharma

Abstract:

The main design parameter of WSN (wireless sensor network) is the energy consumption. To compensate this parameter, hierarchical clustering is a technique that assists in extending duration of the networks life by efficiently consuming the energy. This paper focuses on dealing with the WSNs and the FIS (fuzzy interface system) which are deployed to enhance the BEENISH protocol. The node energy, mobility, pause time and density are considered for the selection of CH (cluster head). The simulation outcomes exhibited that the projected system outperforms the traditional system with regard to the energy utilization and number of packets transmitted to sink.

Keywords: Wireless sensor network, sink, sensor node, routing protocol, fuzzy rule, fuzzy inference system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 399
16378 Reliability Evaluation using Triangular Intuitionistic Fuzzy Numbers Arithmetic Operations

Authors: G. S. Mahapatra, T. K. Roy

Abstract:

In general fuzzy sets are used to analyze the fuzzy system reliability. Here intuitionistic fuzzy set theory for analyzing the fuzzy system reliability has been used. To analyze the fuzzy system reliability, the reliability of each component of the system as a triangular intuitionistic fuzzy number is considered. Triangular intuitionistic fuzzy number and their arithmetic operations are introduced. Expressions for computing the fuzzy reliability of a series system and a parallel system following triangular intuitionistic fuzzy numbers have been described. Here an imprecise reliability model of an electric network model of dark room is taken. To compute the imprecise reliability of the above said system, reliability of each component of the systems is represented by triangular intuitionistic fuzzy numbers. Respective numerical example is presented.

Keywords: Fuzzy set, Intuitionistic fuzzy number, Systemreliability, Triangular intuitionistic fuzzy number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3104
16377 A Type-2 Fuzzy Adaptive Controller of a Class of Nonlinear System

Authors: A. El Ougli, I. Lagrat, I. Boumhidi

Abstract:

In this paper we propose a robust adaptive fuzzy controller for a class of nonlinear system with unknown dynamic. The method is based on type-2 fuzzy logic system to approximate unknown non-linear function. The design of the on-line adaptive scheme of the proposed controller is based on Lyapunov technique. Simulation results are given to illustrate the effectiveness of the proposed approach.

Keywords: Fuzzy set type-2, Adaptive fuzzy control, Nonlinear system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772
16376 An Improved Performance of the SRM Drives Using Z-Source Inverter with the Simplified Fuzzy Logic Rule Base

Authors: M. Hari Prabhu

Abstract:

This paper is based on the performance of the Switched Reluctance Motor (SRM) drives using Z-Source Inverter with the simplified rule base of Fuzzy Logic Controller (FLC) with the output scaling factor (SF) self-tuning mechanism are proposed. The aim of this paper is to simplify the program complexity of the controller by reducing the number of fuzzy sets of the membership functions (MFs) without losing the system performance and stability via the adjustable controller gain. ZSI exhibits both voltage-buck and voltage-boost capability. It reduces line harmonics, improves reliability, and extends output voltage range. The output SF of the controller can be tuned continuously by a gain updating factor, whose value is derived from fuzzy logic, with the plant error and error change ratio as input variables. Then the results, carried out on a four-phase 6/8 pole SRM based on the dSPACEDS1104 platform, to show the feasibility and effectiveness of the devised methods and also performance of the proposed controllers will be compared with conventional counterpart.

Keywords: Fuzzy logic controller, scaling factor (SF), switched reluctance motor (SRM), variable-speed drives.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2371