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Abstract—This study demonstrates an alternative stochastic
imputation approach for large datasets when preferred commercial
packages struggle to iterate due to numerical problems. A large
country conflict dataset motivates the search to impute missing
values well over a common threshold of 20% missingness. The
methodology capitalizes on correlation while using model residuals to
provide the uncertainty in estimating unknown values. Examination
of the methodology provides insight toward choosing linear or
nonlinear modeling terms. Static tolerances common in most
packages are replaced with tailorable tolerances that exploit residuals
to fit each data element. The methodology evaluation includes
observing computation time, model fit, and the comparison of known
values to replaced values created through imputation. Overall, the
country conflict dataset illustrates promise with modeling first-order
interactions, while presenting a need for further refinement that
mimics predictive mean matching.

Keywords—Correlation, country conflict, imputation, stochastic
regression.

I. INTRODUCTION

IMPUTATION methods aim to estimate plausible values

for gaps that may be found in datasets. Researchers have

developed a large variety of methods to overcome missing

values through imputation because imputation outperforms

non-imputation methods and no single imputation method

universally performs the best [1]. Rubin developed multiple

imputation in the 1970s as a method for creating a value in

a missing datum where uncertainty should be retained, and

its remains the best general theory to deal with incomplete

datasets [2]. The two main goals of multiple imputation are to

estimate a value that is both unbiased and confidence valid

[3]. However, some popular and preferred implementations

of multiple imputation struggle to deal with datasets having

a large number of data elements or datasets with high

missingness. Van Buuren, a pioneer in multiple imputation

by chained equations (MICE), lamented that large amounts

of missing data or remotely connected data will influence the

time required for convergence, where the key to convergence is

to achieve independence in the imputations themselves [4]. Si

agrees that multiple imputation faces operational challenges

concerning their 409 variable large-scale dataset, explaining

that MICE cannot directly handle skip patterns and requires

additional efforts to account for logical or consistency bounds

[5]. Others also contend that MICE is a superior approach in

special cases, but faces problems with high-dimensional data

[6], [7].
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The motivating case study for this research uses data

from the Internal Conflict Database, which is a repository

of open-source data consolidated for the purposes of peace

research. The open-source data comes from various data

collectors such as the Center for Systemic Peace, the CIA

World Factbook, Food and Agriculture Organization of the

United Nations, Freedom House, World Bank, and a variety

of other organizations. From the database, 932 continuous data

proxies were selected representative of all aspects of society

from political to economic to social themes in preparation

of future region categorization research. The scope of the

observations consists of the decade between 2006 to 2015,

including the 173 United Nations (UN) member countries

with over 250K total population as of 2016. Of the selected

data elements, 74 capture complete data leaving the remaining

vectors with an average missingness of 17.5%.

Prior country conflict research by Brantley [8] and Kane

[9] demonstrated the superiority of MICE as the technique of

choice for imputing missing data for country conflict data.

Specifically, they both agreed that the multivariate method

of predictive mean matching within MICE dominated other

methods for most variables. Their assumptions rested on

missing values being missing at random, which is made

plausible by either limiting the country-year pair observations

examined or limiting the scope of variables necessary for

modeling. Brantley removed variables where entire country

time-series periods were missing [8]. Kane chose only 32

significant variables from prior studies that predict country

conflict, but only accounted for less than half of the percent

missingness (6.79%) that is being researched in this study [9].

Attempting to apply their approach to a larger country

conflict dataset resulted in algorithm computational failures.

To illustrate, the R package MICE, used by both Brantley

and Kane, failed to iterate one predictive mean matching pass

of the 932 data elements within a 7-day computation period.

Known barriers to algorithms like MICE include numerical

problems from perfect prediction or collinearity, resulting

in a failure to iterate [10]. A Python multiple imputation

package, Iterative Imputer, also ran into computation issues,

exceeding 64 GB of allocated memory after 15 iterations

without converging.

In project management, it is often said that mangers

must choose between only two of three constraints: time,

cost, and quality. A similar sentiment may be said

about analysis concerning time, computational power, and

accuracy. With computational power being a fixed limiting

constraint, a balancing act becomes necessary to implement

an algorithm that maximizes accuracy within a reasonably
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defined time period. This paper presents an algorithm to

impute very large datasets, outside the limits of existing

packages, striking that balance between time and accuracy

through a multiple imputation stepwise correlation multivariate

regression approach.

The approach is similar to stochastic regression imputation

where the point estimate from the regression equation

is modified with a noise component to address upwards

correlation bias and underestimated variability. Instead of

relying on p-values to determine significant variables for the

regression equation, a stepwise approach observing correlation

values is presented to determine feasible independent

variables where their significance is assessed through the

increasing effect of the adjusted-R2 statistic. This methodology

development study, motivated by the country conflict dataset,

imputes numerous variables without running into numerical

problems.

II. MODEL IMPLEMENTATION

Rubin describes under a Bayesian approach that creating

multiple sets of repeated plausible-imputed values reflects the

uncertainty for the nonresponse when the procedure properly

considers the complete-data estimates and the associated

variance-covariance matrices [3]. That is, the estimates

require an approach that considers errors on more correlated

independent variables, rather than leaving some out, to

overcome biased estimates and that combinations up to some

level of interactions should possibly be considered [3]. The

modeling approach used in this research takes advantage of

a regression model with a noise component produced from

the model residuals, also known as stochastic regression.

Little views parametric models, such as regressions, as a

strength in imputation as the assumptions are explicit [7].

Van Buuren demonstrated that the approach provides unbiased

coefficients, although the coverage for confidence validity is

not as good (0.908 vs 0.951/0.941) as more computationally

intensive Bayesian and bootstrap approaches [2]. However,

these computationally intensive methods like MICE become

overly burdensome for imputing large datasets as discussed

concerning numerical problems. With the regression approach,

the benefit of using the residuals to incorporate the uncertainty

in the imputation estimates rests on the assumption that

the residuals are mean zero and normally distributed. The

assumption was visually instantiated showing adequacy for

both percent missingness and convergence rate as illustrated

in Fig. 1.

The core component of the methodology resides in

assuming correlated data elements should assist in providing

accurate estimates for the missing values in the data. For

example, height and weight are often seen as highly positive

correlated variables, therefore if weight is missing in a few

observations, it would be reasonable to use the height variable

to impute the missing data points. Statistically, this concept

is represented by the p-value, where the statistic is used

to reject the null hypothesis that there is no relationship

between the two variables. The benefit in starting with the

analysis of correlation manifests in computation time. Whereas

Fig. 1 Residuals for model regressions
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each variable would need p-value assessment in a stepwise

regression for every iteration to determining significance, only

one pairwise analysis of correlation coefficients is required to

provide a static ordered list to assess significance for the entire

dataset. The ordered list saves thousands of computations

every iteration as the process is conducted once before model

building rather than every time a model attempts to add a new

variable.

Positive or negative correlation is inconsequential to the

evaluation of the ordered list; the usefulness is that stronger

relationships are considered first. The algorithm computes the

absolute value of the Pearson correlation coefficients once,

using only the known values in the dataset as seen in (1),

where xi and yi are sample pairs in two different data elements

with n non-missing value pairs. This matrix, Q, provides

the foundation for discovering the strongest relationships that

improve the model adjusted-R2 within the least number of

trials.

|r| =
∣∣∣∣∣

n
∑n

i xiyi −
∑n

i xi

∑n
i yi√

[n
∑n

i x
2
i − (

∑n
i xi)2][n

∑n
i y

2
i − (

∑n
i yi)

2]

∣∣∣∣∣ (1)

Additionally, all data elements are rank ordered from the

least proportion of missingness to the greatest proportion of

missingness to identify the order in which the imputations

will be processed. This ranking approach is similar to MICE

where the least missingness is estimated first, in other

words, optimizing the order of estimating the dependent

variable within a regression model so subsequent imputations

can benefit from observed and currently imputed values of

all the other variables in the model [11]. The algorithm

dynamically updates the dataset within each iteration to

minimize estimation biases presented by missingness within

the independent variables. That is, the approach assists in

developing complete independent variables for subsequent

imputation models, however, the model for the initial

dependent variables may encounter missingness requiring

preliminary simple imputation such as taking the mean. The

biasing mean imputation on the independent missing variables

is minimized by first imputing dependent variables with

less missingness. As the dependent variable order processes

the data elements with more missingness, the candidate

independent variables become further complete with robust

imputed values rather than weaker preliminary estimates to

rectify their initial missingness. Furthermore, as the algorithm

iterates, the bias decreases when the mean-estimated imputed

independent variable becomes the dependent variable for

imputation, garnering a better estimate from its own regression

model. The rectification can be observed in the increased

adjusted-R2 for subsequently iterated models as seen in Fig.

2 and the quality of the normalized root mean square error

discussed in the later sections.

Once these initial two processes of describing the Q matrix

and dependent variable order are complete, the stepwise

regression modeling commences. Using the data element

missingness-related rank order, the data vector with the least

missingness is set as the first dependent variable in need of

imputation. Of the 932 data elements available, 74 already had

complete data and did not require imputation, leaving 858 data

Fig. 2 Model average adjusted-R2

vectors to impute. Using a stepwise approach, the algorithm

adds independent variables to the model starting with the data

element that has the strongest correlation according to matrix

Q to the dependent variable.

While building the model, the algorithm sets aside a subset

of complete data. For those instances when the dependent

variable is missing, the associated independent variable data

(observation) is removed from the subset. Furthermore, as

additional independent variables are considered for inclusion

into the model, initial cases arise where additional observations

have missing or not yet imputed values in the set. These

observations are also omitted from the subset. This mechanism

of list deletion could potentially cause violations of the

normality assumption of residuals if the degrees of freedom

are too great with respect to the number of observations.

Therefore, a threshold for an adequate number of observations

was assessed before including the candidate independent

variable.

There are a variety of recommendations to accommodate

maintaining the normality assumption of residuals. For

univariate regression, a general rule of thumb maintains

at least 30 observations. For multivariant regression, 10-15

observations per independent variable has been demonstrated

to be an optimal ratio [12]. A final strategy maintains to keep at

least a quarter to half of the observations available for the most

limited independent variable in the model. The most limited

variable being the variable with the least number of known

observations. Five thresholds were tested: 30 observations,

100 observations, and limiting variable observation ratios of a

quarter, a third, and half.

The most conservative constraint (half of the most limiting

variable) could reject the most plausible variable in the

data set (highest correlation value) more often than desired

inserting a less desirable variable concerning correlation value

because it better suits maintaining the normality assumption

of the residuals. Through testing, the most liberal constraint

(at least 30 observations) was only enacted six times in
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the first iteration allowing the highest correlated variable to

almost always enter the model, whereas the most conservative

constraint forced an alternative 925 times.

No statistical difference at the 90% confidence level when

observing the average, 25th percentile, or 10th percentile

for the adjusted-R2 of the model was identified, meaning

model fit was not a factor. There was also no statistical

difference when holding missingness as a factor. The most

conservative constraint allowed some models to dip as low

as 83 observations in the model dependent on the variables

included, causing concerns about degrees of freedom and

the normality assumption for a 10-variable model. Balancing

maintaining a large number of observations while minimizing

the number of alternative independent variables, the algorithm

was set to a constraint of requiring 100 observations after

listwise deleting missing values for model building. The

selected cap of 10 independent variables corresponds to a

minimum of 10 observations per variable, which is within the

aforementioned optimal ratio. This constraint is only necessary

for the first iteration as imputed values on subsequent iterations

fill in any initial missing values in the data.

Next in the methodology, the candidate variable enters the

model for adjusted-R2 examination. The R2 represents the

explained variance by the independent variable toward the

dependent variable. However, the R2 continues to increase as

more variables are introduced whereas adjusted-R2 penalizes

additional variables that fail to significantly affect the

dependent variable. Three different models were examined:

linear (LR), nonlinear (NL), and nonlinear with first-order

interactions (NFI). The LR model, as illustrated in (2),

provided the baseline case of providing parsimonious terms

within the regression model, where y is the estimated

dependent variable, xn is the added known independent

variable, β0 is the model intercept, and βn1 is the

corresponding linear coefficient. The assumption includes that

any potential curvilinear relationships within the variables

are insignificant. The NL model makes no such assumption

and includes squared variable terms, in addition to the

linear terms, as seen in (3), if those terms continue to

increase the adjusted-R2 of the model, where all coefficients

from the linear model are present along with βn2 as the

corresponding squared term coefficient. Additionally, the

methodology observes the strong heredity assumption, that

the geometric global extremum of all variables may not be

the special case of zero [13]. The NFI model assesses both

squared variables and first-order interactions, in additional to

the linear terms, for inclusion as long as the adjusted-R2

continues to increase for each candidate term as seen in (4)

where all coefficients from the linear model are present along

with βn3 as the corresponding interaction coefficient. Due

to the assessment of each additional term, the computation

times increases exponentially from LR to NL to NFI. Although

the potential exists that additional variables may increase the

adjusted-R2 past 10 modeled variables, a cap of 10 variables

was implemented. When considering country conflict datasets,

Ray argues that country conflict data should adhere to Achen’s

“rule of three” when assessing independent variables for

regression while Oneal demonstrates the rule to be too strict

in examples of up to 8 variables [14]. Van Buuren notes that

general regression, overcoming multicollinearity and degree of

freedom problems, may be suitable upwards of 25 variables,

however, explained variance after 15 variables is typically

negligible at best [4]. The maximum 10 variables threshold

facilitates a sweet spot to allow explained variance and manage

the list deletion issue presented earlier.

y = β0 + β11x1 + ...+ βn1xn (2)

y = (2) + β12x
2
1 + ...+ βn2x

2
n (3)

y = (2) + βn3x1x1 + βn3x1x2...+ βn3xnxn (4)

Should the candidate variable fail to increase the

adjusted-R2, the next top 9 candidate variables are evaluated

for inclusion. Observations concluded that on average, three

initial candidates out of the 10 allowed variables in the model

would fail to increase the adjusted-R2, however an alternate

variable was found to increase the adjusted-R2 by the third

best candidate, necessitating the need to look at subsequent

independent variables past the initial failure to increase the

adjusted-R2.

Once the independent variables are identified for the model,

the associated data produces the linear coefficients for the

model that imputes the missing dependent values according

to ŷ = β ∗X , where β are the model coefficient parameters

and X are the data vector values for the associated missing

dependent variable. This provides a point estimate from which

to develop a stochastic regression result. For the first iteration,

it is possible that some of the independent values may also be

missing as discussed earlier, however, with trying to impute the

dependent variable, list deletion is no longer an option. In these

cases, an average of the non-missing data vectors estimates a

feasible point estimate for the missing data. As previously

mentioned, the bias inserted into the imputation diminishes

with subsequent iterations as the dependent variable converges

toward a more plausible value.

Noise added to the imputed point estimate provides the

stochastic element desired in multiple imputation. Using a

list of residuals captured from the first iteration, residuals

produced only from the original known values, the imputed

point estimate receives an adjustment from a randomly

selected residual value to accommodate the uncertainty in the

imputation. Seeing that the residuals are distribution normal,

the uncertainty will have mean zero with standard deviation

one.

Finally, the algorithm checks the stopping rule against

the convergence factor to exit iterating each specific data

element. The stopping rule compares each imputed before

noise point estimate in the data vector from the before noise

value of the previous iteration. Should all values within the

data vector be less than the convergence factor, the algorithm

considers the data element converged. For this study, each

data element obtained a tailored convergence factor of three

standard deviations of the data element’s residuals to account

for the different scale in values rather than rely on a static

factor for the algorithm. The full pseudocode for the algorithm

is provided in Fig. 3.
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Fig. 3 Methodology Pseudocode

III. METHODOLOGY EVALUATION

The analyst trade-off of time, computational power and

accuracy sparked the development of this methodology

due to the “numerical problems” or “breakdowns” of the

multiple imputation algorithm in alternative approaches. It is

acknowledged that alternative approaches may foster improved

plausible accuracy should the algorithms compile an iteration

or process data in an acceptable period. This approach provides

a choice to analysts with large datasets to balance acceptable

time and accuracy. As General Patton suggested, “A good plan

violently executed now is better than a perfect plan next week”

[15]. In other words, this methodology allows analysts to have

good imputations quickly instead of waiting for imputations

from higher acclaimed algorithms that either may deliver too

late or breakdown.

The time evaluation consists of observing the quantity of

data elements converged after a certain number of iterations.

Computationally, building the X matrix takes longer as

the complexity of adding squares or interactions enter the

model. Furthermore, looping back in the algorithm to find

alternative independent variables increases iteration time as

well. However, this time addition pales in comparison to

the factor of how many data elements require imputation.

Each data element takes 0.95 seconds to model under LR,

1.09 seconds under NL, and 1.68 seconds under NFI, with

standard error in the milliseconds. The additional time for the

more complex models is attributed to evaluating additional

candidate terms, namely squared and first-order interaction

terms. Recognizing that all models process data elements

within a second of each other, the time component can be

illustrated by how many data elements still require additional

iterations to converge.

Preliminary model validation typically begins with assessing

model fit by observing the dependent variable variability as

a function of the independent variable variability known as

the R2 statistic. Good regression models desire independent

variables that explain the variation in the dependent variable.

The statistic is only useful if the residuals maintain the normal

distribution assumption. Furthermore, the statistic always

increases as additional independent variables are added to the

model, therefore it has no stepwise assessment usefulness. The

adjusted-R2 penalizes additional variables allowing stepwise

assessment. Observation of the adjusted-R2 is twofold. First,

a high value signifies that the imputations through the

correlation approach may provide plausible values. Second,

the initial observation of adjusted-R2 contains only the known

values in the original dataset. By the second iteration, bias was

inserted into the dataset through estimating unknown values in

the independent variables. Observing the adjusted-R2 through

subsequent iterations alleviates bias concerns as the value

reapproaches the initial observation.

Finally, the normalized root means square error (NRMSE)

functionally evaluates the goodness of the imputations to

recreate known values. The NRMSE value is obtained by

dividing the root mean square error by the range of the

original data vector as illustrated in (5), where x1ip are the

known values in the test set, x̂1ip are the imputed values

corresponding to x1ip with N1p test set observations, x2p are

the known values in the original set, for the pth data element of

P total elements. Normalizing assists in adjusting the value to

account for any scaling bias in the statistic with the common

choice being range normalization [16]. A test set was created

by randomly selecting 8% of the known data for imputation.

Van Buuren stresses that imputation is a challenge “to obtain

statistically valid inferences from incomplete data” rather than

an exercise in accurately determining the unknown true value,

especially when using multiple imputation techniques [2].

Despite his angst for root mean square error, he concedes that

it is a good metric to evaluate the compromise between bias

and variance if the desire is to assess accuracy and precision

[2].

NRMSE =

P∑
p=1

√∑N1p

i=1 (x̂1ip − x1ip)2/N1p

max(x2p)−min(x2p)
(5)

IV. MODEL RESULTS

The majority of data elements converged after only two

iterations for the LR model and four iterations for NL. In other

words, the difference between the regression point estimates

in most vectors were less than three standard deviations of the

first iteration residuals. The LR model converged more vectors

faster than the other two as seen in Fig. 4; and with the fastest

time to compute a data element, remained the fastest model

type to reach the stopping condition.
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Fig. 4 Model convergence rate of data vectors

TABLE I
MODEL AVERAGE ADJUSTED-R2, N=10

Iteration 1 Iteration 20
Model Avg Std Dev Avg Std Dev

LR 0.8732 0.0001 0.8541 0.0012
NL 0.8939 0.0000 0.8892 0.0037
NFI 0.9257 0.0003 0.9357 0.0035

The convergence rate appears counterintuitive when

considering the average adjusted-R2 of the models seen in

Table I. It was hypothesized that better model fit would

increase convergence, however, it was observed that the

correlation between the convergence iteration and the data

vector adjusted-R2 was weak (<0.3). Despite this finding, all

models produced a high average adjusted-R2. With NL models

producing a higher adjusted-R2 than LR, the assumption

remains plausible that many of the data elements should be

characterized in curvilinear form. And supporting Rubin’s

claim, imputation models benefit further in adjusted-R2 when

modeling independent variables up to at least first-order

interactions.

As far as the accuracy of the models, the median NRMSE

for the data elements demonstrated low values after 20

iterations with 0.019 (LR), 0.0216 (NL), and 0.645 (NFI).

However, the sum NRMSE was less optimistic with 1,903

(NL) and magnitude higher for NL and NFI. For the LR

model, 4 of the 858 vectors had extremely high NRMSE

values ranging from 11 to 1,154 inflating the overall NRMSE.

All 4 vectors had very high adjusted-R2 and no connection

to percent missingness could be established. It was observed

that some data vectors may have imputed values outside

the plausible distribution. For example, known values in

positive-only vectors had imputed observations with negative

values. This remains an obstacle for regression methodologies

that do not add limiting bounds like predictive mean matching.

The “out-of-bounds” imputations exacerbate the issue for

squared terms in the NL and NFI models when selected

as independent variables, which lead to a larger number of

outliers concerning vector NRMSE.

V. CONCLUSION

This paper presents a methodology to impute large datasets

based on convergence of iterations within confidence bounds

set by initial regression model residuals and using the

information contained within the data correlation matrix.

Large datasets increase the presence of numerical issues

causing other imputation methods to fail. The regression

methodology presented, demonstrated through the country

conflict dataset, appears to overcome numerical issues without

failed or stalled iterations. The methodology processes data

elements quickly and generates high adjusted-R2 models.

Through developing the methodology, a stopping criterion

to dynamically define convergence was presented offering

a more tailorable condition for when data elements are of

different scales. The exploitation of the initial regression

model residuals overcomes any guesswork that may be

present when submitting a static stopping tolerance offered

in other imputation packages. The algorithm balances

computation time, computational power, and accuracy to

achieve a traceable, defensible approach to imputing large

data sets where many preferred commercial packages fail.

Despite the mentioned advantages, the methodology could

benefit from further refinement. Although the methodology

produces useable and defendable results, further work is

needed to assure the user of plausible values. Notably, the

issue of “out-of-bounds” imputations should be addressed

to take further advantage of the improvements from NL

and NFI type modeling. Other aspects of research could

include investigating multicollinearities within the independent

variables, while the dependent variable capitalizes on high

correlation selection.
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