Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. The distribution feeder reconfiguration (DFR) is one of the most important control schemes in the distribution networks, which can be affected by DGs. This paper presents a new approach to DFR at the distribution networks considering wind turbines. The main objective of the DFR is to minimize the deviation of the bus voltage. Since the DFR is a nonlinear optimization problem, we apply the Adaptive Modified Firefly Optimization (AMFO) approach to solve it. As a result of the conflicting behavior of the single- objective function, a fuzzy based clustering technique is employed to reach the set of optimal solutions called Pareto solutions. The approach is tested on the IEEE 32-bus standard test system.<\/p>\r\n","references":"[1]\tW. Ouyang, H. Cheng, X. Zhang, L. Yao, \"Distribution network planning method considering distributed generation for peak cutting,\u201d Energy Conversion and Management, vol. 51, pp. 2394\u20132401, 2010.\r\n[2]\tWijayatunga, P., Fernando, W. & Shrestha, R. , \" Impact of distributed and independent power generation on greenhouse gas emissions,\u201d Energy Conversion and Management, vol. 45, vo. 20, pp. 3193\u2013206, 2004.\r\n[3]\tG. Vulasala, S. Sirirgiri, and S. Thiruveedula, \"Feeder reconfiguration for loss reduction in unbalanced distribution system using genetic algorithm,\u201d Int. J. Elect. Power Energy Syst. Eng., vol. 2, no. 4, pp. 240\u2013248, Feb. 2009.\r\n[4]\tT. Ackerman, G. Anderson and L. Soder, \"Distributed generation: A definition\u201d, Elsevier Science, pp. 195-204, Dec 2000.\r\n[5]\tA. Merlin, H. Back H, \"Search for a minimal loss operating spanning tree configuration in an urban power distribution system\u201d, Proceeding of the 5th Power System Computation Conference, Cambridge, UK, 1\u201318, 1997.\r\n[6]\tF. Vanderson Gomes, S. Carneiro, J.L. Pereira, M.P. Vinagre, P. Garcia, L. Ramos Araujo, \" A New heuristic reconfiguration algorithm for large distribution systems\u201d, IEEE Transactions On Power Systems , vol. 20, no. 2, pp.1373-8, 2005.\r\n[7]\tM. Yiming and N.M Karen, \"Switch placement to improve system reliability for radial distribution systems with distributed generation,\u201d IEEE Trans. Power Delivery, vol. 18, pp. 1346-1352, Nov. 2003.\r\n[8]\tB. Amanulla, S. Chakrabarti, and S. N. Singh, \"Reconfiguration of power distribution systems considering reliability and power loss,\u201d IEEE Trans. Power Delivery, vol. 27, pp. 918-926, Apr. 2012.\r\n[9]\tS. Civanlar, J. Grainger, H. Yin, and S. Lee, \"Distribution feeder reconfiguration for loss reduction,\u201d IEEE Trans. Power Del., vol. 3, no. 3, pp. 1217\u20131223, Jul. 1988.\r\n[10]\tK. Nara, A. Shiose, M. Kitagawoa, and T. Ishihara, \"Implementation of genetic algorithm for distribution systems loss minimum reconfiguration,\u201d IEEE Trans. Power Syst., vol. 7, no. 3, pp. 1044\u20131051, Aug. 1992.\r\n[11]\tJ. Z. Zhu, \"Optimal reconfiguration of electrical distribution network using the refined genetic algorithm,\u201d Elect. Power Syst. Res., vol. 62, pp. 37\u201342, 2002.\r\n[12]\tR. Srinivasa Rao, S.V.L. Narasimham, M.R. Raju, and A. Srinivasa Rao, \"Optimal network reconfiguration of large-scale distribution system using harmony search algorithm,\u201d IEEE Trans. Power Syst., vol. 26, no. 3, pp. 1080\u20131088, Aug. 2011.\r\n[13]\tT. Niknam , \"Application of honey-bee mating optimization on state estimation of a power distribution system including distributed generators,\u201d J Zhejiang Univ Sci , vol. 9, no. 12, pp. 1753\u201364, 2008.\r\n[14]\tA. Soroudi, M. Ehsan, R. Caire, N. Hadjsaid, \"Possibilistic evaluation of distributed generations Impacts on distribution networks,\u201d IEEE Transactions on Power Systems, no. 26, pp. 26:2293-301, 2011.\r\n[15]\tM. Madrigal, K. Ponnambalam, V.H. Quintana, \"Probabilistic optimal power flow,\u201d In: Proc. 1998 IEEE Can. Conf. Electrical and Computer engineering, Waterloo, Canada;. pp. 385-8, 1989.\r\n[16]\tE. Rosenblueth , \"Point estimate for probability moments,\u201d Proceedings of National Academy of Science of United States of America; 72:3812-4, 1975.\r\n[17]\tH.P. Hong, \"An efficient point estimate method for probabilistic analysis,\u201d Reliability Engineering and System Safet, 59:261-7, 1989.\r\n[18]\tC. Su, \"Probabilistic load-flow computation using point estimate method,\u201d IEEE Transactions on Power Systems, 20:1842-51, 2005.\r\n[19]\tS. Chun-Lien, L. Chan-Nan L, \"two-point estimate method for quantifying transfer capability uncertainty,\u201d IEEE Transactions on Power System, 20:573-9, 2005.\r\n[20]\tX.S. Yang, \"Nature-Inspired Metaheuristic Algorithms,\u201d Frome: Luniver Press. ISBN 1905986106, 2008.\r\n[21]\tT. Apostolopoulos, A. Vlachos, \"Application of the Firefly Algorithm for Solving the Economic Emissions Load Dispatch Problem,\u201d International Journal of Combinatorics, ID: 523806, 2011.\r\n[22]\tY.P. Cai, G.H. Huang, Z.F. Yang, Q. Tan, \"Identification of optimal strategies for energy management systems planning under multiple uncertainties,\u201d Appl Energy, 86(4):480\u201395, 2009.\r\n[23]\tT. Niknam, \"An efficient hybrid evolutionary based on PSO and ACO algorithms for distribution feeder reconfiguration,\u201d European Trans on Elect Power, vol. 20, pp. 575 \u2013 590, 2010. \r\n[24]\tT. Niknam, S.I. Taheri, J. Aghaei, S. Tabatabaei, M. Nayeripour, \"A modified honey bee mating optimization algorithm for multiobjective placement of renewable energy resources,\u201d Applied Energy , vol. 88 , pp. 4817-4830, 2011.\r\n[25]\tS.J. Carneiro, J.L. Pereira, M.P. Vinagre, P.A. Garcia, L.R. Araujo, \"A New Heuristic Reconfiguration Algorithm for Large Distribution Systems,\u201d IEEE Tran on Power sys, vol. 20 , pp. 1373 \u2013 1378, 2005.\r\n[26]\tT. Niknam, A. Kavousifard, A. Seifi, \"Distribution feeder reconfiguration considering fuel cell\/wind\/photovoltaic power Plants,\u201d Journal of Renewable Energy, vol. 37, pp. 213-225, 2011.\r\n[27]\tM. Sailaja Kumari, S. Maheswarapu, \"Enhanced Genetic Algorithm based computation technique for multi-objective Optimal Power Flow solution,\u201d International Journal of Electrical Power & Energy Systems, vol. 32, pp. 736 \u2013 742, 2010.\r\n","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 86, 2014"}