PID Control Design Based on Genetic Algorithm with Integrator Anti-Windup for Automatic Voltage Regulator and Speed Governor of Brushless Synchronous Generator
Authors: O. S. Ebrahim, M. A. Badr, Kh. H. Gharib, H. K. Temraz
Abstract:
This paper presents a methodology based on genetic algorithm (GA) to tune the parameters of proportional-integral-differential (PID) controllers utilized in the automatic voltage regulator (AVR) and speed governor of a brushless synchronous generator driven by three-stage steam turbine. The parameter tuning is represented as a nonlinear optimization problem solved by GA to minimize the integral of absolute error (IAE). The problem of integral windup due to physical system limitations is solved using simple anti-windup scheme. The obtained controllers are compared to those designed using classical Ziegler-Nichols technique and constrained optimization. Results show distinct superiority of the proposed method.
Keywords: Brushless synchronous generator, Genetic Algorithm, GA, Proportional-Integral-Differential control, PID control, automatic voltage regulator, AVR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 312References:
[1] O.I. Elgared, Electric energy systems theory, McGraw-Hill, 1982.
[2] L. Y. Ghamri, H. Awadh, N. Al-Shamsi, S. AlKhateri, A. Khurram, H. Rehman, "Robust AVR design for the synchronous generator," IET Journal of Engineering, Vol. 2019, Issue 17, pp. 3469-34600, 2019. doi/epdf/10.1049/joe.2018.8114
[3] O.P. Malik, G.S. Hope, "Microprocessor-based adaptive load frequency control,” IEE Proc. on Generation, Transmission, and Distribution, Vol. 131, Issue 4, pp. 121-128, 1983.DOI: 10.1049/ip-c.1984.0020
[4] M. Furat; G. G. Cücü, “Design, Implementation, and Optimization of Sliding Mode Controller for Automatic Voltage Regulator System,” IEEE Access, Vol. 10, pp. 55650-55674, 2022. DOI: 10.1109/ACCESS.2022.3177621
[5] E. Rebollo, F. R. Blanquez, C. A. Platero, F. Blazquez, and M. Redondo,” Improved high-speed de-excitation system for brushless synchronous machines tested on a 20 MVA hydro-generator,” IET Electric Power Appl., Vol. 9, issue 6, pp. 397-437. 2015.https://doi.org/10.1049/iet-epa.2014.0313
[6] Y. Mitsukura, T. Yamamoto, and M. Kaneda, “A design of self-tuning PID controllers using a genetic algorithm,” in Proc. American Control Conference, San Diego, CA, pp. 1361–1365, 1999.
[7] T. Kawabe and T. Tagami, “A real-coded genetic algorithm for matrix inequality design approach of robust PID controller with two degrees of freedom”, in Proc. IEEE International Symposium on Intelligent Control, Istanbul, Turkey, pp. 119–124, 1997.
[8] A. Visioli, “Tuning of PID controllers with fuzzy logic”, IEE Proc. on Control Theory Applications, Vol. 148, No. 1, pp. 1–8, 2001.
[9] T.L. Seng, M.B. Khalid, and R. Yusof, “Tuning of a neuro-fuzzy controller by genetic algorithm”, IEEE Trans. on Systems, Man, and Cybernetics, Vol. 29, pp. 226–236, 1999.
[10] K.J. Astrom and T. Hagglund, "The future of PID control," IFAC proceeding, Vol. 33, Issue 4, pp. 19-30, 2000. https://doi.org/10.1016/S1474-6670(17)38216-2.
[11] R.A. Krohling and J.P. Rey, “Design of optimal disturbance rejection PID controllers using genetic algorithm,” IEEE Trans. on Evolutionary Computing, Vol. 5, pp. 78–82, 2001.
[12] K. J. Astrom and L. Rundqwist, "Integrator Windup and How to Avoid It, " 1989 American Control Conference. pp. 1693 1698. doi:10.23919/ACC.1989.4790464
[13] K. J. Aström, “Computer-controlled systems: theory and design,” Prentice Hall Publisher, 1990. (book)
[14] O. S. Ebrahim, M. F. Salem, P. k. Jain, and M. A. Badr,"Application of linear quadratic regulator theory to the stator field oriented control of induction motors," IET Electr. Power Appl., Vol. 4, Issue 8, pp. 637– 646, 2010.DOI: 10.1049/iet-epa.2009.0164
[15] Islam, A T.M.R., and Ula, A H.M.S. “Modeling of multi-stage steam turbines for power system transient studies," United States: N. p., 1990. Web. doi:10.1080/07313569008909479.
[16] G.K. Stefopoulos, P.S. Georgilakis, N.D. Hatziargyriou, and A.P.S. Meliopoulos, "A genetic algorithm solution to the governor-turbine dynamic model identification in multi-machine power systems," the 44th IEEE Conf. on Decision and Control, 2005. DOI: 10.1109/CDC.2005.1582336
[17] N. Madinehi, K. Shaloudegi; M. Abedi; H. A. Abyaneh, "Optimum design of PID controller in AVR system using intelligent methods," 2011. DOI: 10.1109/PTC.2011.6019196
[18] H. Panagopoulos, K.J. Astrom and T. Hagglund, "Design of PID controllers based on constrained optimization," IEE Proceedings ـــControl Theory and Applications, Vol. 149, Issue 1, pp. 32-40, 2002.DOI:10.1049/ip-cta:20020102
[19] S. Ozana and T. Docekal, "PID Controller Design Based on Global Optimization Technique with Additional Constraints, "Journal of Electrical Engineering, Vol. 67, No. 3, v pp. 160-168,2016. DOI:10.1515/jee-2016-0023.
[20] Samira Chebli et al, “Multi-Objective Genetic Algorithm Optimization Using PID Controller for AQM/TCP Networks,” International Review of Automatic Control, Vol. 10, no. 1, pp. 33-39,2017. DOI:10.15866/ireaco.v10i1.11143
[21] Tony Bertes: Model development and validation of brushless exciters. 2015 IEEE Eindhoven PowerTech (2015). DOI: 10.1109/PTC.2015.7232788.