**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**522

# Search results for: k–Riemann–Liouville fractional integral

##### 522 Some Remarks About Riemann-Liouville and Caputo Impulsive Fractional Calculus

**Authors:**
M. De la Sen

**Abstract:**

**Keywords:**
Rimann- Liouville fractional calculus,
Caputofractional derivative,
Dirac delta,
Distributional derivatives,
Highorderdistributional derivatives.

##### 521 Hermite–Hadamard Type Integral Inequalities Involving k–Riemann–Liouville Fractional Integrals and Their Applications

**Authors:**
Artion Kashuri,
Rozana Liko

**Abstract:**

**Keywords:**
Hermite–Hadamard’s inequalities,
k–Riemann–Liouville fractional integral,
H¨older’s inequality,
Special means.

##### 520 Existence of Iterative Cauchy Fractional Differential Equation

**Authors:**
Rabha W. Ibrahim

**Abstract:**

Our main aim in this paper is to use the technique of non expansive operators to more general iterative and non iterative fractional differential equations (Cauchy type ). The non integer case is taken in sense of Riemann-Liouville fractional operators. Applications are illustrated.

**Keywords:**
Fractional calculus,
fractional differential equation,
Cauchy equation,
Riemann-Liouville fractional operators,
Volterra
integral equation,
non-expansive mapping,
iterative differential equation.

##### 519 Riemann-Liouville Fractional Calculus and Multiindex Dzrbashjan-Gelfond-Leontiev Differentiation and Integration with Multiindex Mittag-Leffler Function

**Authors:**
U.K. Saha,
L.K. Arora

**Abstract:**

The multiindex Mittag-Leffler (M-L) function and the multiindex Dzrbashjan-Gelfond-Leontiev (D-G-L) differentiation and integration play a very pivotal role in the theory and applications of generalized fractional calculus. The object of this paper is to investigate the relations that exist between the Riemann-Liouville fractional calculus and multiindex Dzrbashjan-Gelfond-Leontiev differentiation and integration with multiindex Mittag-Leffler function.

**Keywords:**
Multiindex Mittag-Leffler function,
Multiindex Dzrbashjan-Gelfond-Leontiev differentiation and integration,
Riemann-Liouville fractional integrals and derivatives.

##### 518 An Efficient Collocation Method for Solving the Variable-Order Time-Fractional Partial Differential Equations Arising from the Physical Phenomenon

**Authors:**
Haniye Dehestani,
Yadollah Ordokhani

**Abstract:**

**Keywords:**
Collocation method,
fractional partial differential
equations,
Legendre-Laguerre functions,
pseudo-operational matrix
of integration.

##### 517 Stability of Fractional Differential Equation

**Authors:**
Rabha W. Ibrahim

**Abstract:**

We study a Dirichlet boundary value problem for Lane-Emden equation involving two fractional orders. Lane-Emden equation has been widely used to describe a variety of phenomena in physics and astrophysics, including aspects of stellar structure, the thermal history of a spherical cloud of gas, isothermal gas spheres,and thermionic currents. However, ordinary Lane-Emden equation does not provide the correct description of the dynamics for systems in complex media. In order to overcome this problem and describe dynamical processes in a fractalmedium, numerous generalizations of Lane-Emden equation have been proposed. One such generalization replaces the ordinary derivative by a fractional derivative in the Lane-Emden equation. This gives rise to the fractional Lane-Emden equation with a single index. Recently, a new type of Lane-Emden equation with two different fractional orders has been introduced which provides a more flexible model for fractal processes as compared with the usual one characterized by a single index. The contraction mapping principle and Krasnoselskiis fixed point theorem are applied to prove the existence of solutions of the problem in a Banach space. Ulam-Hyers stability for iterative Cauchy fractional differential equation is defined and studied.

**Keywords:**
Fractional calculus,
fractional differential equation,
Lane-Emden equation,
Riemann-Liouville fractional operators,
Volterra integral equation.

##### 516 Lyapunov Type Inequalities for Fractional Impulsive Hamiltonian Systems

**Authors:**
Kazem Ghanbari,
Yousef Gholami

**Abstract:**

**Keywords:**
Fractional derivatives and integrals,
Hamiltonian
system,
Lyapunov type inequalities,
stability,
disconjugacy.

##### 515 Existence of Solutions for a Nonlinear Fractional Differential Equation with Integral Boundary Condition

**Abstract:**

This paper deals with a nonlinear fractional differential equation with integral boundary condition of the following form: Dαt x(t) = f(t, x(t),Dβ t x(t)), t ∈ (0, 1), x(0) = 0, x(1) = 1 0 g(s)x(s)ds, where 1 < α ≤ 2, 0 < β < 1. Our results are based on the Schauder fixed point theorem and the Banach contraction principle.

**Keywords:**
Fractional differential equation,
Integral boundary condition,
Schauder fixed point theorem,
Banach contraction principle.

##### 514 The Practical MFCAV Riemann Solver is Applied to a New Cell-centered Lagrangian Method

**Authors:**
Yan Liu,
Weidong Shen,
Dekang Mao,
Baolin Tian

**Abstract:**

The MFCAV Riemann solver is practically used in many Lagrangian or ALE methods due to its merit of sharp shock profiles and rarefaction corners, though very often with numerical oscillations. By viewing it as a modification of the WWAM Riemann solver, we apply the MFCAV Riemann solver to the Lagrangian method recently developed by Maire. P. H et. al.. The numerical experiments show that the application is successful in that the shock profiles and rarefaction corners are sharpened compared with results obtained using other Riemann solvers. Though there are still numerical oscillations, they are within the range of the MFCAV applied in onther Lagrangian methods.

**Keywords:**
Cell-centered Lagrangian method,
approximated Riemann solver,
HLLC Riemann solver

##### 513 Existence and Uniqueness of Positive Solution for Nonlinear Fractional Differential Equation with Integral Boundary Conditions

**Authors:**
Chuanyun Gu

**Abstract:**

**Keywords:**
Fractional differential equation,
positive solution,
existence and uniqueness,
fixed point theorem,
generalized concave
and convex operator,
integral boundary conditions.

##### 512 Fractional-Order PI Controller Tuning Rules for Cascade Control System

**Authors:**
Truong Nguyen Luan Vu,
Le Hieu Giang,
Le Linh

**Abstract:**

The fractional–order proportional integral (FOPI) controller tuning rules based on the fractional calculus for the cascade control system are systematically proposed in this paper. Accordingly, the ideal controller is obtained by using internal model control (IMC) approach for both the inner and outer loops, which gives the desired closed-loop responses. On the basis of the fractional calculus, the analytical tuning rules of FOPI controller for the inner loop can be established in the frequency domain. Besides, the outer loop is tuned by using any integer PI/PID controller tuning rules in the literature. The simulation study is considered for the stable process model and the results demonstrate the simplicity, flexibility, and effectiveness of the proposed method for the cascade control system in compared with the other methods.

**Keywords:**
Fractional calculus,
fractional–order proportional integral controller,
cascade control system,
internal model control approach.

##### 511 Operational Representation of Certain Hypergeometric Functions by Means of Fractional Derivatives and Integrals

**Authors:**
Manoj Singh,
Mumtaz Ahmad Khan,
Abdul Hakim Khan

**Abstract:**

The investigation in the present paper is to obtain certain types of relations for the well known hypergeometric functions by employing the technique of fractional derivative and integral.

**Keywords:**
Fractional Derivatives and Integrals,
Hypergeometric
functions.

##### 510 Numerical Computation of Sturm-Liouville Problem with Robin Boundary Condition

**Authors:**
Theddeus T. Akano,
Omotayo A. Fakinlede

**Abstract:**

**Keywords:**
Sturm-Liouville problem,
Robin boundary condition,
finite element method,
eigenvalue problems.

##### 509 Notes on Fractional k-Covered Graphs

**Authors:**
Sizhong Zhou,
Yang Xu

**Abstract:**

**Keywords:**
graph,
binding number,
fractional k-factor,
fractional k-covered graph.

##### 508 Robust Fractional-Order PI Controller with Ziegler-Nichols Rules

**Authors:**
Mazidah Tajjudin,
Mohd Hezri Fazalul Rahiman,
Norhashim Mohd Arshad,
Ramli Adnan

**Abstract:**

In process control applications, above 90% of the controllers are of PID type. This paper proposed a robust PI controller with fractional-order integrator. The PI parameters were obtained using classical Ziegler-Nichols rules but enhanced with the application of error filter cascaded to the fractional-order PI. The controller was applied on steam temperature process that was described by FOPDT transfer function. The process can be classified as lag dominating process with very small relative dead-time. The proposed control scheme was compared with other PI controller tuned using Ziegler-Nichols and AMIGO rules. Other PI controller with fractional-order integrator known as F-MIGO was also considered. All the controllers were subjected to set point change and load disturbance tests. The performance was measured using Integral of Squared Error (ISE) and Integral of Control Signal (ICO). The proposed controller produced best performance for all the tests with the least ISE index.

**Keywords:**
PID controller,
fractional-order PID controller,
PI
control tuning,
steam temperature control,
Ziegler-Nichols tuning.

##### 507 Approximation of Sturm-Liouville Problems by Exponentially Weighted Legendre-Gauss Tau Method

**Authors:**
Mohamed K. El Daou

**Abstract:**

We construct an exponentially weighted Legendre- Gauss Tau method for solving differential equations with oscillatory solutions. The proposed method is applied to Sturm-Liouville problems. Numerical examples illustrating the efficiency and the high accuracy of our results are presented.

**Keywords:**
Oscillatory functions,
Sturm-Liouville problems,
legendre polynomial,
gauss points.

##### 506 On Fractional (k,m)-Deleted Graphs with Constrains Conditions

**Authors:**
Sizhong Zhou,
Hongxia Liu

**Abstract:**

Let G be a graph of order n, and let k 2 and m 0 be two integers. Let h : E(G) [0, 1] be a function. If e∋x h(e) = k holds for each x V (G), then we call G[Fh] a fractional k-factor of G with indicator function h where Fh = {e E(G) : h(e) > 0}. A graph G is called a fractional (k,m)-deleted graph if there exists a fractional k-factor G[Fh] of G with indicator function h such that h(e) = 0 for any e E(H), where H is any subgraph of G with m edges. In this paper, it is proved that G is a fractional (k,m)-deleted graph if (G) k + m + m k+1 , n 4k2 + 2k − 6 + (4k 2 +6k−2)m−2 k−1 and max{dG(x), dG(y)} n 2 for any vertices x and y of G with dG(x, y) = 2. Furthermore, it is shown that the result in this paper is best possible in some sense.

**Keywords:**
Graph,
degree condition,
fractional k-factor,
fractional (k,
m)-deleted graph.

##### 505 A Neighborhood Condition for Fractional k-deleted Graphs

**Authors:**
Sizhong Zhou,
Hongxia Liu

**Abstract:**

Abstract–Let k ≥ 3 be an integer, and let G be a graph of order n with n ≥ 9k +3- 42(k - 1)2 + 2. Then a spanning subgraph F of G is called a k-factor if dF (x) = k for each x ∈ V (G). A fractional k-factor is a way of assigning weights to the edges of a graph G (with all weights between 0 and 1) such that for each vertex the sum of the weights of the edges incident with that vertex is k. A graph G is a fractional k-deleted graph if there exists a fractional k-factor after deleting any edge of G. In this paper, it is proved that G is a fractional k-deleted graph if G satisfies δ(G) ≥ k + 1 and |NG(x) ∪ NG(y)| ≥ 1 2 (n + k - 2) for each pair of nonadjacent vertices x, y of G.

**Keywords:**
Graph,
minimum degree,
neighborhood union,
fractional k-factor,
fractional k-deleted graph.

##### 504 Applying p-Balanced Energy Technique to Solve Liouville-Type Problems in Calculus

**Authors:**
Lina Wu,
Ye Li,
Jia Liu

**Abstract:**

We are interested in solving Liouville-type problems to explore constancy properties for maps or differential forms on Riemannian manifolds. Geometric structures on manifolds, the existence of constancy properties for maps or differential forms, and energy growth for maps or differential forms are intertwined. In this article, we concentrate on discovery of solutions to Liouville-type problems where manifolds are Euclidean spaces (i.e. flat Riemannian manifolds) and maps become real-valued functions. Liouville-type results of vanishing properties for functions are obtained. The original work in our research findings is to extend the *q*-energy for a function from finite in *L ^{q}* space to infinite in non-

*L*space by applying

^{q}*p*-balanced technique where

*q*=

*p*= 2. Calculation skills such as Hölder's Inequality and Tests for Series have been used to evaluate limits and integrations for function energy. Calculation ideas and computational techniques for solving Liouville-type problems shown in this article, which are utilized in Euclidean spaces, can be universalized as a successful algorithm, which works for both maps and differential forms on Riemannian manifolds. This innovative algorithm has a far-reaching impact on research work of solving Liouville-type problems in the general settings involved with infinite energy. The

*p*-balanced technique in this algorithm provides a clue to success on the road of

*q*-energy extension from finite to infinite.

**Keywords:**
Differential Forms,
Hölder Inequality,
Liouville-type problems,
p-balanced growth,
p-harmonic maps,
q-energy growth,
tests for series.

##### 503 The Riemann Barycenter Computation and Means of Several Matrices

**Authors:**
Miklos Palfia

**Abstract:**

An iterative definition of any n variable mean function is given in this article, which iteratively uses the two-variable form of the corresponding two-variable mean function. This extension method omits recursivity which is an important improvement compared with certain recursive formulas given before by Ando-Li-Mathias, Petz- Temesi. Furthermore it is conjectured here that this iterative algorithm coincides with the solution of the Riemann centroid minimization problem. Certain simulations are given here to compare the convergence rate of the different algorithms given in the literature. These algorithms will be the gradient and the Newton mehod for the Riemann centroid computation.

**Keywords:**
Means,
matrix means,
operator means,
geometric mean,
Riemannian center of mass.

##### 502 Fractional Masks Based On Generalized Fractional Differential Operator for Image Denoising

**Authors:**
Hamid A. Jalab,
Rabha W. Ibrahim

**Abstract:**

This paper introduces an image denoising algorithm based on generalized Srivastava-Owa fractional differential operator for removing Gaussian noise in digital images. The structures of nxn fractional masks are constructed by this algorithm. Experiments show that, the capability of the denoising algorithm by fractional differential-based approach appears efficient to smooth the Gaussian noisy images for different noisy levels. The denoising performance is measured by using peak signal to noise ratio (PSNR) for the denoising images. The results showed an improved performance (higher PSNR values) when compared with standard Gaussian smoothing filter.

**Keywords:**
Fractional calculus,
fractional differential operator,
fractional mask,
fractional filter.

##### 501 Fractional Order Feedback Control of a Ball and Beam System

**Authors:**
Santosh Kr. Choudhary

**Abstract:**

In this paper, fractional order feedback control of a ball beam model is investigated. The ball beam model is a particular example of the double Integrator system having strongly nonlinear characteristics and unstable dynamics which make the control of such system a challenging task. Most of the work in fractional order control systems are in theoretical nature and controller design and its implementation in practice is very small. In this work, a successful attempt has been made to design a fractional order PIλDμcontroller for a benchmark laboratory ball and beam model. Better performance can be achieved using a fractional order PID controller and it is demonstrated through simulations results with a comparison to the classic PID controller.

**Keywords:**
Fractional order calculus,
fractional order controller,
fractional order system,
ball and beam system,
PIλDμ controller,
modelling,
simulation.

##### 500 Derivation of Fractional Black-Scholes Equations Driven by Fractional G-Brownian Motion and Their Application in European Option Pricing

**Authors:**
Changhong Guo,
Shaomei Fang,
Yong He

**Abstract:**

**Keywords:**
European option pricing,
fractional Black-Scholes
equations,
fractional G-Brownian motion,
Taylor’s series of fractional
order,
uncertain volatility.

##### 499 Stability of Interval Fractional-order Systems with Order 0 < α < 1

**Authors:**
Hong Li,
Shou-ming Zhong,
Hou-biao Li

**Abstract:**

In this paper, some brief sufficient conditions for the stability of FO-LTI systems dαx(t) dtα = Ax(t) with the fractional order are investigated when the matrix A and the fractional order α are uncertain or both α and A are uncertain, respectively. In addition, we also relate the stability of a fractional-order system with order 0 < α ≤ 1 to the stability of its equivalent fractional-order system with order 1 ≤ β < 2, the relationship between α and β is presented. Finally, a numeric experiment is given to demonstrate the effectiveness of our results.

**Keywords:**
Interval fractional-order systems,
linear matrix inequality (LMI),
asymptotical stability.

##### 498 Relation between Roots and Tangent Lines of Function in Fractional Dimensions: A Method for Optimization Problems

**Authors:**
Ali Dorostkar

**Abstract:**

In this paper, a basic schematic of fractional dimensional optimization problem is presented. As will be shown, a method is performed based on a relation between roots and tangent lines of function in fractional dimensions for an arbitrary initial point. It is shown that for each polynomial function with order N at least N tangent lines must be existed in fractional dimensions of 0 < α < N+1 which pass exactly through the all roots of the proposed function. Geometrical analysis of tangent lines in fractional dimensions is also presented to clarify more intuitively the proposed method. Results show that with an appropriate selection of fractional dimensions, we can directly find the roots. Method is presented for giving a different direction of optimization problems by the use of fractional dimensions.

**Keywords:**
Tangent line,
fractional dimension,
root,
optimization problem.

##### 497 Application of Fractional Model Predictive Control to Thermal System

**Authors:**
Aymen Rhouma,
Khaled Hcheichi,
Sami Hafsi

**Abstract:**

The article presents an application of Fractional Model Predictive Control (FMPC) to a fractional order thermal system using Controlled Auto Regressive Integrated Moving Average (CARIMA) model obtained by discretization of a continuous fractional differential equation. Moreover, the output deviation approach is exploited to design the K -step ahead output predictor, and the corresponding control law is obtained by solving a quadratic cost function. Experiment results onto a thermal system are presented to emphasize the performances and the effectiveness of the proposed predictive controller*.*

**Keywords:**
Fractional model predictive control,
fractional order systems,
thermal system.

##### 496 Realization of Fractional-Order Capacitors with Field-Effect Transistors

**Authors:**
Steve Hung-Lung Tu,
Yu-Hsuan Cheng

**Abstract:**

**Keywords:**
Fractional-order,
field-effect transistors,
RC
transmission lines.

##### 495 Observer Based Control of a Class of Nonlinear Fractional Order Systems using LMI

**Authors:**
Elham Amini Boroujeni,
Hamid Reza Momeni

**Abstract:**

**Keywords:**
Fractional order calculus,
Fractional order observer,
Linear matrix inequality,
Nonlinear Systems,
Observer based
Controller.

##### 494 A Design of Fractional-Order PI Controller with Error Compensation

**Authors:**
Mazidah Tajjudin,
Norhashim Mohd Arshad,
Ramli Adnan

**Abstract:**

Fractional-order controller was proven to perform better than the integer-order controller. However, the absence of a pole at origin produced marginal error in fractional-order control system. This study demonstrated the enhancement of the fractionalorder PI over the integer-order PI in a steam temperature control. The fractional-order controller was cascaded with an error compensator comprised of a very small zero and a pole at origin to produce a zero steady-state error for the closed-loop system. Some modification on the error compensator was suggested for different order fractional integrator that can improve the overall phase margin.

**Keywords:**
Fractional-order PI,
Ziegler-Nichols tuning,
Oustaloup's Recursive Approximation,
steam temperature control.

##### 493 Oil Displacement by Water in Hauterivian Sandstone Reservoir of Kashkari Oil Field

**Authors:**
A. J. Nazari,
S. Honma

**Abstract:**

This paper evaluates oil displacement by water in Hauterivian sandstone reservoir of Kashkari oil field in North of Afghanistan. The core samples of this oil field were taken out from well No-21^{st}, and the relative permeability and fractional flow are analyzed. Steady state flow laboratory experiments are performed to empirically obtain the fractional flow curves and relative permeability in different water saturation ratio. The relative permeability represents the simultaneous flow behavior in the reservoir. The fractional flow approach describes the individual phases as fractional of the total flow. The fractional flow curve interprets oil displacement by water, and from the tangent of fractional flow curve can find out the average saturation behind the water front flow saturation. Therefore, relative permeability and fractional flow curves are suitable for describing the displacement of oil by water in a petroleum reservoir. The effects of irreducible water saturation, residual oil saturation on the displaceable amount of oil are investigated through Buckley-Leveret analysis.

**Keywords:**
Fractional flow,
oil displacement,
relative permeability,
simultaneously flow.