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Abstract—By using fixed point theorems for a class of
generalized concave and convex operators, the positive solution of
nonlinear fractional differential equation with integral boundary
conditions is studied, where n ≥ 3 is an integer, μ is a parameter
and 0 ≤ μ < α. Its existence and uniqueness is proved, and an
iterative scheme is constructed to approximate it. Finally, two
examples are given to illustrate our results.
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I. INTRODUCTION

FRACTIONAL differential equations arise in
many engineering and scientific disciplines such as the

mathematical modeling of systems and processes in the
fields of mechanics, engineering and biological sciences
fields, etc., (see [2] and the references therein). Its existence
and multiplicity is studied by using of Guo-Krasnoselskiis
fixed point theorem etc., (see [3] and the references therein).
Boundary value problems for fractional differential equations
with integral boundary conditions are very interesting and
largely unknown. For a detailed description of the integral
boundary conditions, we refer the reader to some recent
papers (see [4] and the references therein).

In this paper, we consider the existence and uniqueness of
positive solution for nonlinear fractional differential equation
with integral boundary conditions:{

Dα
0+u(t) + q(t)f(t, u(t)) = 0, 0 < t < 1, α ∈ (n− 1, n]

u(j)(0) = 0, 0 ≤ j ≤ n− 2, u(1) = μ
∫ 1

0
u(s)ds,

(1)
where n ≥ 3 is an integer, μ is a parameter and 0 ≤ μ < α,
and Dα

0+ is the standard Riemann-Liouville fractional
derivative and f : [0, 1]× [0,∞) → [0,∞) is continuous and
monotone with respect to the second argument, and
q : (0, 1) → [0,∞) is continuous. A function u is called a
positive solution of the problem (1) if u(t) satisfies (1) and
u(t) > 0 on (0, 1).

Yongping Sun and Yan Sun [6] investigated the positive
solutions for the problem (1). Its existence is proved by means
of a monotone iterative method. In this study, our work is to
extend and improve the main results of the paper [6]. By means
of fixed point theorems for a class of generalized concave
and convex operators, we get the existence and uniqueness of
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positive solutions for the problem (1). Meanwhile, an iterative
scheme is constructed to approximate this unique solution.

II. PRELIMINARIES AND PREVIOUS RESULTS

Definition 1. [1] The integral

Iα0+f(x) =
1

Γ(α)

∫ x

0

f(t)

(x− t)1−α
dt, x > 0

where α > 0 and Γ(α) denotes the gamma function, is called
the Riemann-Liouville fractional integral of order α.
Definition 2. [1] For a function f(x) given in the interval
[0,∞), the expression

Dα
0+f(x) =

1

Γ(n− α)
(
d

dx
)n

∫ x

0

f(t)

(x− t)α−n+1
dt

where n = [α] + 1, [α] denotes the integer part of number α,
is called the Riemann-Liouville fractional derivative of order
α.

In [5], the author obtained the Greens function associated
with the problem (1). More precisely, the author proved the
following lemma.
Lemma 1. [5] Let h ∈ C[0, 1] be a given function and n−1 <
α ≤ n, then the boundary-value problem{

Dα
0+u(t) + h(t) = 0, 0 < t < 1, α ∈ (n− 1, n]

u(j)(0) = 0, 0 ≤ j ≤ n− 2, u(1) = μ
∫ 1

0
u(s)ds,

has a unique solution

u(t) =

∫ 1

0

G(t, s)h(s)ds, t ∈ [0, 1],

where

G(t, s) = H(t, s) +
μtα−1

(α− μ)Γ(α)
s(1− s)α−1, t, s ∈ [0, 1],

H(t, s) =
1

Γ(α)

⎧⎪⎪⎨
⎪⎪⎩

tα−1(1− s)α−1 − (t− s)α−1,
0 ≤ s ≤ t ≤ 1,

tα−1(1− s)α−1,
0 ≤ t ≤ s ≤ 1,

Obviously,

G(t, s) =
1

(α− μ)Γ(α)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tα−1(1− s)α−1(α− μ+ μs)
−(α− μ)(t− s)α−1,

0 ≤ s ≤ t ≤ 1,
tα−1(1− s)α−1(α− μ+ μs),

0 ≤ t ≤ s ≤ 1,
(2)
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and G(t, s) is continuous on the unit square [0, 1] × [0, 1].
Lemma 2. The Green function G(t, s) defined by (2) has the
following property:

1
(α−μ)Γ(α) t

α−1(1− s)α−1μs

≤ G(t, s)
≤ 1

(α−μ)Γ(α) t
α−1(1− s)α−1(α− μ+ μs)

(3)

for t, s ∈ (0, 1).
Proof: Evidently, the right inequality holds. So we only show
that the left inequality. When 0 ≤ s ≤ t ≤ 1, we have 0 ≤
t−s ≤ t−ts = (1−s)t, and thus (t−s)α−1 ≤ (1−s)α−1tα−1.
Hence,

G(t, s) = 1
(α−μ)Γ(α) [t

α−1(1− s)α−1(α− μ+ μs)

−(α− μ)(t− s)α−1]
≥ 1

(α−μ)Γ(α) [t
α−1(1− s)α−1(α− μ+ μs)

−(α− μ)tα−1(1− s)α−1]
= 1

(α−μ)Γ(α) t
α−1(1− s)α−1μs.

When 0 ≤ t ≤ s ≤ 1, by assumption 0 ≤ μ < α, we have

G(t, s) = 1
(α−μ)Γ(α) t

α−1(1− s)α−1(α− μ+ μs)

≥ 1
(α−μ)Γ(α) t

α−1(1− s)α−1μs.

So the left inequality also holds.
A non-empty closed convex set P ⊂ E is a cone if it meets:

(i)x ∈ P, λ ≥ 0 ⇒ λx ∈ P ;(ii)x ∈ P,−x ∈ P ⇒ x = θ.
Suppose (E, ||·||) is an order Banach space and a cone P ⊂ E,
i.e. x ≤ y if and only if y− x ∈ P . If x ≤ y and x 	= y, then
we denote x < y. We denote the zero element of E by θ.

Putting P 0 = {x ∈ P |x is an interior point of P}, a cone
P is said to be solid if P 0 is non-empty. Moreover, if there is a
positive constant N > 0 such that,for all x, y ∈ E, θ ≤ x ≤ y
implies ||x|| ≤ N ||y||, then P is called normal; N is called
the normality constant of P .

If x ≤ y implies Ax ≤ Ay, we say that an operator A :
E → E is increasing.

For all x, y ∈ E, the notation x ∼ y means that there exist
λ > 0 and μ > 0 such that λx ≤ y ≤ μx. Clearly ∼ is an
equivalence relation. Given w > θ (i.e. w ≥ θ and w 	= θ),
we denote the set Pw = {x ∈ E|x ∼ w} by Pw. It is easy to
see that Pw ⊂ P for w ∈ P .
Lemma 3. [7] Let P be a normal cone in a real Banach space
E, and ω > θ. A : Pω → Pω is an increasing operator and

A(tx) ≥ tα(t)Ax, ∀t ∈ (0, 1), x ∈ Pw, (4)

where 0 < α(t) < 1, ∀t ∈ (0, 1). Then operator A has a
unique solution x∗ in Pω . Moreover, constructing successively
the sequence xn = Axn−1, n = 1, 2, · · · for any initial value
x0 ∈ Pω , we have ‖xn − x∗‖ → 0(n → ∞).
Lemma 4. [7] Let P be a normal cone in a real Banach space
E, and ω > θ. A : Pω → Pω is a decreasing operator and

A(tx) ≤ t−α(t)Ax, ∀t ∈ (0, 1), x ∈ Pw, (5)

where 0 < α(t) < 1, ∀t ∈ (0, 1). Then operator A has a
unique solution x∗ in Pω . Moreover, constructing successively
the sequence xn = Axn−1, n = 1, 2, · · · for any initial value
x0 ∈ Pω , we have ‖xn − x∗‖ → 0(n → ∞).

III. MAIN RESULTS

In this section, we apply lemma 3 and lemma 4 to
investigate the problem (1), new results on the existence and
uniqueness of positive solution are obtained.

In this paper, we will work in the Banach space
C[0, 1] = {x : [0, 1] → R is continuous} with the
standard norm ‖x‖ = sup |x(t)| : t ∈ [0, 1]. Notice that this
space can be endowed with a partial order given by
x, y ∈ C[0, 1], x ≤ y ⇔ x(t) ≤ y(t) for t ∈ [0, 1]. Let
P = x ∈ C[0, 1]|x(t) ≥ 0, t ∈ [0, 1] be the standard cone.
Evidently, P is a normal cone in C[0, 1] and the normality
constant is 1.
Theorem 1. Assume that
(H1) f(t, u) : [0, 1] × [0,∞) → [0,∞) is continuous and
increasing with respect to the second argument,and f(t, 0) 	≡
0, t ∈ [0, 1];
(H2) q : (0, 1) → [0,∞) is continuous and

0 <

∫ 1

0

(1− s)α−1q(s)ds < ∞,

0 <

∫ 1

0

(1− s)α−1sq(s)ds < ∞.

(H3) for ∀λ ∈ (0, 1) and ∀u ∈ [0,∞), there exists a function
ϕ(λ) ∈ (λ, 1], such that f(t, λu) ≥ ϕ(λ)f(t, u). Then the
problem (1) has a unique positive solution u∗ in Pw, where
w(t) = tα−1, t ∈ [0, 1]. Moreover, for any initial value u0 ∈
Pw, constructing successively the iterative scheme

un(t) =

∫ 1

0

G(t, s)q(s)f(s, un−1(s))ds, n = 1, 2, · · · ,

we have un(t) → u∗(t) as n → ∞, where G(t, s) is given as
(2).
Proof: Solution of the problem (1) can be converted to solution
of the operator equation which is equivalent to the problem
(1), i.e.:

Au(t) =
∫ 1

0
G(t, s)q(s)f(s, u(s))ds

where G(t, s) is given as (2).
Note that G(t, s) ≥ 0, t, s ∈ [0, 1]. By assumption (H1),(H2)
and Lemma 2, we know that Au(t) ≥ 0, t ∈ [0, 1] and A :
P → P is an increasing operator. By assumption (H3), for
λ ∈ (0, 1), we know that

A(λu)(t) =
∫ 1

0
G(t, s)q(s)f(s, λu(s))ds

≥ ϕ(λ)
∫ 1

0
G(t, s)q(s)f(s, u(s))ds = ϕ(λ)Au(t).

That is,A(λu) ≥ ϕ(λ)Au, ∀u ∈ P, λ ∈ (0, 1).
Let α(t) = lnϕ(t)

ln t , t ∈ (0, 1), then α(t) ∈ (0, 1) and

A(λu) ≥ λα(λ)Au, ∀u ∈ P, λ ∈ (0, 1).

Next we show that A : Pω → Pω , where ω(t) = tα−1.
Let
r = min{f(t, 0) : t ∈ [0, 1]}, R = max{f(t, 1) : t ∈ [0, 1]},
then 0 < r ≤ R. By assumption (H1), (H2) and Lemma 2,
we have

Aw(t) =
∫ 1

0
G(t, s)q(s)f(s, w(s))ds

≥ ∫ 1

0
1

(α−μ)Γ(α) t
α−1(1− s)α−1μsq(s)f(s, 0)ds

≥ [ r
(α−μ)Γ(α)

∫ 1

0
(1− s)α−1μsq(s)ds]tα−1,
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Aw(t)

=
∫ 1

0
G(t, s)q(s)f(s, w(s))ds

≤ ∫ 1

0
1

(α−μ)Γ(α) t
α−1(1− s)α−1(α− μ+ μs)q(s)f(s, 1)ds

≤ [ R
(α−μ)Γ(α)

∫ 1

0
(1− s)α−1(α− μ+ μs)q(s)ds]tα−1

So we have

[ r
(α−μ)Γ(α)

∫ 1

0
(1− s)α−1μsq(s)ds]w(t)

≤ Aw(t)

≤ [ R
(α−μ)Γ(α)

∫ 1

0
(1− s)α−1(α− μ+ μs)q(s)ds]w(t).

By assumption (H2), we note that

r
(α−μ)Γ(α)

∫ 1

0
(1− s)α−1μsq(s)ds > 0,

R
(α−μ)Γ(α)

∫ 1

0
(1− s)α−1(α− μ+ μs)q(s)ds > 0.

We easily prove that Aω ∈ Pω , so A : Pω → Pω .
Finally, by means of lemma 3, the operator equation

Au = u has a unique positive solution u∗ in Pw. Moreover,
constructing successively the iterative scheme
un = Aun−1, n = 1, 2, · · · for any initial value u0 ∈ Pw, we
have un → u∗ as n → ∞. That is, the problem (1) has a
unique positive solution u∗ in Pw, where
ω(t) = tα−1, t ∈ [0, 1]. For any initial value u0 ∈ Pw,
constructing successively the iterative scheme

un(t) =

∫ 1

0

G(t, s)q(s)f(s, un−1(s))ds, n = 1, 2, · · · ,

we have un → u∗, t ∈ [0, 1] as n → ∞.
Theorem 2. Assume that
(H4) f(t, u) : [0, 1] × [0,∞) → [0,∞) is continuous and
decreasing with respect to the second argument,and f(t, 1) 	≡
0, t ∈ [0, 1];
(H5) q : (0, 1) → [0,∞) is continuous and

0 <

∫ 1

0

(1− s)α−1q(s)ds < ∞,

0 <

∫ 1

0

(1− s)α−1sq(s)ds < ∞.

(H6) for ∀λ ∈ (0, 1) and ∀u ∈ [0,∞), there exists a function
ϕ(λ) ∈ (λ, 1], such that f(t, λu) ≥ 1

ϕ(λ)f(t, u). Then the
problem (1) has a unique positive solution u∗ in Pw, where
w(t) = tα−1, t ∈ [0, 1]. Moreover, for any initial value u0 ∈
Pw, constructing successively the iterative scheme

un(t) =

∫ 1

0

G(t, s)q(s)f(s, un−1(s))ds, n = 1, 2, · · · ,

we have un(t) → u∗(t) as n → ∞, where G(t, s) is given as
(2).
Proof: Solution of the problem (1) can be converted to solution
of the operator equation which is equivalent to the problem
(1), i.e.:

Au(t) =
∫ 1

0
G(t, s)q(s)f(s, u(s))ds

where G(t, s) is given as (2).
Note that G(t, s) ≥ 0, t, s ∈ [0, 1]. By assumption (H4),(H5)
and Lemma 2, we know that Au(t) ≥ 0, t ∈ [0, 1] and A :

P → P is a decreasing operator. By assumption (H6), for
λ ∈ (0, 1), we know that

A(λu)(t) =
∫ 1

0
G(t, s)q(s)f(s, λu(s))ds

≤ 1
ϕ(λ)

∫ 1

0
G(t, s)q(s)f(s, u(s))ds = 1

ϕ(λ)Au(t).

That is,A(λu) ≤ 1
ϕ(λ)Au, ∀u ∈ P, λ ∈ (0, 1).

Let α(t) = lnϕ(t)
ln t , t ∈ (0, 1), then α(t) ∈ (0, 1) and

A(λu) ≤ λ−α(λ)Au, ∀u ∈ P, λ ∈ (0, 1).

Next we show that A : Pω → Pω , where ω(t) = tα−1.
Let r′ = min{f(t, 1) : t ∈ [0, 1]}, R′ = max{f(t, 0) : t ∈
[0, 1]}, then 0 < r′ ≤ R′. By assumption (H4), (H5) and
Lemma 2, we have

Aw(t) =
∫ 1

0
G(t, s)q(s)f(s, w(s))ds

≥ ∫ 1

0
1

(α−μ)Γ(α) t
α−1(1− s)α−1μsq(s)f(s, 1)ds

≥ [ r′
(α−μ)Γ(α)

∫ 1

0
(1− s)α−1μsq(s)ds]tα−1,

Aw(t)

=
∫ 1

0
G(t, s)q(s)f(s, w(s))ds

≤ ∫ 1

0
1

(α−μ)Γ(α) t
α−1(1− s)α−1(α− μ+ μs)q(s)f(s, 0)ds

≤ [ R′
(α−μ)Γ(α)

∫ 1

0
(1− s)α−1(α− μ+ μs)q(s)ds]tα−1

So we have

[ r′
(α−μ)Γ(α)

∫ 1

0
(1− s)α−1μsq(s)ds]w(t)

≤ Aw(t)

≤ [ R′
(α−μ)Γ(α)

∫ 1

0
(1− s)α−1(α− μ+ μs)q(s)ds]w(t).

By assumption (H5), we note that
r′

(α−μ)Γ(α)

∫ 1

0
(1− s)α−1μsq(s)ds > 0,

R′
(α−μ)Γ(α)

∫ 1

0
(1− s)α−1(α− μ+ μs)q(s)ds > 0.

We easily prove that Aω ∈ Pω , so A : Pω → Pω .
Finally, by means of lemma 4, the operator equation

Au = u has a unique positive solution u∗ in Pw. Moreover,
constructing successively the iterative scheme
un = Aun−1, n = 1, 2, · · · for any initial value u0 ∈ Pw, we
have un → u∗ as n → ∞. That is, the problem (1) has a
unique positive solution u∗ in Pw, where
ω(t) = tα−1, t ∈ [0, 1]. For any initial value u0 ∈ Pw,
constructing successively the iterative scheme

un(t) =

∫ 1

0

G(t, s)q(s)f(s, un−1(s))ds, n = 1, 2, · · · ,

we have un → u∗, t ∈ [0, 1] as n → ∞.

IV. EXAMPLES

We present two examples to illustrate Theorem 1 and
Theorem 2.
Example 1. Consider the following problem:{

−D
5
2
0+u(t) = u

1
2 + u

1
3 + t2 + 1, 0 ≤ t ≤ 1,

u(j)(0) = 0, 0 ≤ j ≤ 1, u(1) = 2
∫ 1

0
u(s)ds,

(6)

In this example, we have α = 5
2 . Let

q(t) ≡ 1, f(t, u) = u
1
2 + u

1
3 + t2 + 1, t ∈ [0, 1].
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Obviously, f(t, u) : [0, 1]×[0,∞) → [0,∞) is continuous and
increasing with respect to the second argument, and f(t, 0) =
t2 + 1 > 0, t ∈ [0, 1]. And q(t) is continuous and

0 <
∫ 1

0
(1− s)α−1q(s)ds =

∫ 1

0
(1− s)

3
2 ds < ∞,

0 <
∫ 1

0
(1− s)α−1sq(s)ds =

∫ 1

0
(1− s)

3
2 sds < ∞.

Besides, for t ∈ [0, 1], λ ∈ (0, 1), u ∈ [0,∞), we have

f(t, λu) = (t3 + 1)[ 1

λ
1
2 u

1
2 +2

+ 1

λ
1
3 u

1
3 +2

+ 1
3 ]

≤ (t3 + 1)[ 1

λ
1
2 (u

1
2 +2)

+ 1

λ
1
2 (u

1
3 +2)

+ 1

3λ
1
2
]

= 1

λ
1
2
(t3 + 1)[ 1

u
1
2 +2

+ 1

u
1
3 +2

+ 1
3 ]

= 1

λ
1
2
f(t, u)

So, for ∀λ ∈ (0, 1) and ∀u ∈ [0,∞), there exists a function
ϕ(λ) = λ

1
2 ∈ (λ, 1],such thatf(t, λu) ≥ ϕ(λ)f(t, u).

Hence all the conditions of Theorem 1 are satisfied. An
application of Theorem 1 implies that problem (6) has a unique
positive solution in Pw, where w(t) = t

3
2 ,t ∈ [0, 1].

Example 2. Consider the following problem:{
−D

5
2
0+u(t) = (t3 + 1)[ 1

u
1
2 +2

+ 1

u
1
3 +2

+ 1
3 ], 0 ≤ t ≤ 1,

u(j)(0) = 0, 0 ≤ j ≤ 1, u(1) = 2
∫ 1

0
u(s)ds,

(7)
In this example, we have α = 5

2 . Let

q(t) ≡ 1, f(t, u) = (t3+1)[
1

u
1
2 + 2

+
1

u
1
3 + 2

+
1

3
], t ∈ [0, 1].

Obviously, f(t, u) : [0, 1]×[0,∞) → [0,∞) is continuous and
decreasing with respect to the second argument, and f(t, 0) =
t3 + 1 > 0, t ∈ [0, 1]. And q(t) is continuous and

0 <
∫ 1

0
(1− s)α−1q(s)ds =

∫ 1

0
(1− s)

3
2 ds < ∞,

0 <
∫ 1

0
(1− s)α−1sq(s)ds =

∫ 1

0
(1− s)

3
2 sds < ∞.

Besides, for t ∈ [0, 1], λ ∈ (0, 1), u ∈ [0,∞), we have

f(t, λu) = λ
1
2u

1
2 (t) + λ

1
3u

1
3 (t) + t2 + 1

≥ λ
1
2u

1
2 (t) + λ

1
2u

1
2 (t) + λ

1
2 t2 + λ

1
2

= λ
1
2 (u

1
2 (t) + u

1
2 (t) + t2 + 1)

= λ
1
2 f(t, u).

So, for ∀λ ∈ (0, 1) and ∀u ∈ [0,∞), there exists a function
ϕ(λ) = λ

1
2 ∈ (λ, 1],such thatf(t, λu) ≤ 1

ϕ(λ)f(t, u). Hence
all the conditions of Theorem 2 are satisfied. An application
of Theorem 2 implies that problem (7) has a unique positive
solution in Pw, where w(t) = t

3
2 ,t ∈ [0, 1].
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