**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**32795

##### Hermite–Hadamard Type Integral Inequalities Involving k–Riemann–Liouville Fractional Integrals and Their Applications

**Authors:**
Artion Kashuri,
Rozana Liko

**Abstract:**

**Keywords:**
Hermite–Hadamard’s inequalities,
k–Riemann–Liouville fractional integral,
H¨older’s inequality,
Special means.

**References:**

[1] H. Hudzik and L. Maligranda, Some remarks on s–convex functions, Aequationes Math., 48 (1994), 100-111.

[2] S. S. Dragomir and S. Fitzpatrik, The Hadamard’s inequality for s–convex functions in the second sense, Demonstratio Math., 32(4) (1999), 687-696.

[3] S. ´’Ozcan and ˙I. ˙Is¸can, Some new Hermite–Hadamard type inequalities for s–convex functions and their applications, J. Inequal. Appl., 2019(201) (2019), 1–11.

[4] M. Muddassar, M. I. Bhatti and M. Iqbal, Some new s–Hermite-Hadamard type inequalities for differentiable functions and their applications, Proc. Pak. Acad. Sci., 49(1) (2012), 9–17.

[5] S. Rashid, M. A. Noor, K. I. Noor and A. O. Akdemir, Some New Generalizations for Exponentially s-Convex Functions and Inequalities via Fractional Operators, Int. J. Sci. Innovation Tech., 1(1) (2014), 1–12.

[6] M. J. Cloud, B. C. Drachman and L. Lebedev, Inequalities, Springer, Cham, Second edition, 2014.

[7] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies; Elsevier Sci. B.V.: Amsterdam, The Netherlands, 2006; Vol. 204.

[8] D. Baleanu, P. O. Mohammed, M. J. Vivas-Cortez, and Y.-R. Oliveros, Some modifications in conformable fractional integral inequalities, Adv. Differ. Equ., 2020(374), (2020).

[9] T. Abdeljawad, P. O. Mohammed and A. Kashuri, New Modified Conformable Fractional Integral Inequalities of Hermite–Hadamard Type with Applications, J. Funct. Spaces, 2020 Article 4352357, (2020).

[10] P. O. Mohammed, Some integral inequalities of fractional quantum type, Malaya J. Mat., 4(1) (2016), 93–99.

[11] P. O. Mohammed and T. Abdeljawad, Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel, Adv. Differ. Equ., 2020(363) (2020).

[12] P. O. Mohammed, New integral inequalities for preinvex functions via generalized beta function, J. Interdiscip. Math., 22(4) (2019), 539–549.

[13] M. Chudziak and M. ´Iołdak, Hermite–Hadamard and Fej´er Inequalities for Co-Ordinated (F,G)–Convex Functions on a Rectangle, Symmetry, 12(13) (2020).

[14] P. O. Mohammed and M. Z. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math., 372 Article 112740, (2020).

[15] P. O. Mohammed and I. Brevik, A New Version of the Hermite–Hadamard Inequality for Riemann–Liouville Fractional Integrals, Symmetry, 12(610) (2020).

[16] T.-Y. Zhang, A.-P. Ji and F. Qi, On Integral Inequalities of Hermite–Hadamard Type for s–Geometrically Convex Functions, Abst. Appl. Anal., 2012 Article 560586, (2012).

[17] T.-Y. Zhang, A.-P. Ji and F. Qi, Some inequalities of Hermite–Hadamard type for GA–convex functions with applications to means, Le Mat., 68 (2013), 229–239.

[18] P. O. Mohammed, Some new Hermite–Hadamard type inequalities for MT–convex functions on differentiable coordinates, J. King Saud Univ. Sci., 30 (2018), 258–262.

[19] J. Han, P. O. Mohammed and H. Zeng, Generalized fractional integral inequalities of Hermite–Hadamard-type for a convex function, Open Math., 18 (2020), 794–806.

[20] D.-P. Shi, B.-Y. Xi and F. Qi, Hermite-Hadamard type inequalities for Riemann–Liouville fractional integrals of (α,m)–convex functions, Fract. Differ. Calc., 4 (2014), 31–43.

[21] F. Qi, P. O. Mohammed, J. C. Yao and Y. H. Yao, Generalized fractional integral inequalities of Hermite–Hadamard type for (α,m)–convex functions, J. Inequal. Appl., 2019(135) (2019).

[22] P. O. Mohammed and M. Z. Sarikaya, Hermite–Hadamard type inequalities for F–convex function involving fractional integrals, J. Inequal. Appl., 2018(359) (2018).

[23] D. Baleanu, P. O. Mohammed and S. Zeng, Inequalities of trapezoidal type involving generalized fractional integrals, Alex. Eng. J., (2020).

[24] P. O. Mohammed, T. Abdeljawad, S. Zeng and A. Kashuri, Fractional Hermite–Hadamard Integral Inequalities for a New Class of Convex Functions, Symmetry, 12(1485) (2020).

[25] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite–Hadamard Inequalities and Applications, RGMIA Monographs; Victoria University: Footscray, Australia, 2000.

[26] G. Farid, X. Qiang and S. B. Akbar, Generalized fractional integrals inequalities for exponentially (s,m)–convex functions, J. Inequal. Appl., (2020).

[27] A. Guessab and G. Schmeisser, Sharp integral inequalities of the Hermite-Hadamard type, J. Approx. Theory, 115(2) (2002), 260–288.

[28] A. Iqbal, M. A. Khan, S. Ullah and Y.-M. Chu, Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Spaces, 2020, Article ID 9845407 (2020).

[29] Y. Khurshid, M. A. Khan and Y.-M. Chu, Conformable integral inequalities of the Hermite–Hadamard type in terms of GG– and GA–convexities, J. Funct. Spaces, 2019, Article ID 6926107 (2019).

[30] S. Mubeen and G. M. Habibullah, k–Fractional integrals and applications, Int. J. Contemp. Math. Sci., 7 (2012), 89–94.

[31] M. Z. Sarikaya and H. Yaldiz, On generalized Hermite–Hadamard type integral inequalities involving Riemann–Liouville fractional integrals, Nihonkai Math. J., 25 (2014), 93–104.