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Abstract—In this paper, some generalization integral inequalities
of Hermite–Hadamard type for functions whose derivatives are
s–convex in modulus are given by using k–fractional integrals. Some
applications to special means are obtained as well. Some known
versions are recovered as special cases from our results. We note that
our inequalities can be viewed as new refinements of the previous
results. Finally, our results have a deep connection with various
fractional integral operators and interested readers can find new
interesting results using our idea and technique as well.
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I. INTRODUCTION AND PRELIMINARIES

THE theory of convexity presents an amazing, fascinating

and captivating field of research and also played

significant role in the development of the theory of

inequalities. Due to a lot of applications the theory of

convexity has become a rich source of motivation and

absorbing field for researchers. Many researchers endeavor

and attempt to define and introduce new ideas and concepts

about convex functions and extend and generalize its variant

forms in different ways using innovative ideas and fruitful

techniques. Using the theory of convexity, mathematicians

provide an amazing tool, numerical techniques to tackle and

to solve a wide class of problems which arise in pure and

applied sciences. In diverse and opponent research, inequalities

have a lot of applications in statistical problems, probability

and numerical quadrature formulas. Many famously known

results in inequalities theory can be obtained using the

convexity property of the functions. In 1994, first time

Hudzik and Maligranda [1] introduced the class of s–convex

functions in second sense. Further in this direction Dragomir

and Fitzpatrick [2] put efforts and established new integral

inequalities via s–convex functions. Recently İşcan [3]

asserted that some new Hermite-Hadamard type inequalities

for s–convex functions and their applications with the

help of well known and remarkable inequalities improved

power–mean integral inequality and Hölder–İşcan integral

inequality. By the time Muddassar [4] adds some contributions

via s–convex functions in this dynamic and captivating field.

Noor [5] keeps his work on generalizations, introduced

and proved new versions of Hermite–Hadamard inequality
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for exponentially s–convex function via the Katugampola

fractional integral.
Integral inequalities are generally applicable in many

branches of mathematics such as mathematical analysis,

fractional calculus, discrete fractional calculus and abstract

spaces; for an overview, the reader should see the literature on

integral inequalities, e.g., [6]–[12] and the references therein.
Nowadays, the study of convexity is considered as an

original icon in the investigation of theoretical behavior of

mathematical inequalities, e.g., [13]–[15]. Recently, several

works on integral inequalities for convex functions were

conducted. In particular, much attention has been given

to the theoretical studies of inequalities on different

types of convex functions such as s–geometrically convex

functions [16], GA–convex functions [17], MT–convex

function [18], [19], (α,m)–convex functions [20], [21],

F–convex functions [22], λψ–convex functions [23], a new

class of convex functions [24], and many other types can be

found in [25].
Let us recall some basic definitions that we will used in

sequel.
Definition 1: Let ψ : I → � be a real valued function. A

function ψ is said to be convex, if

ψ (tμ1 + (1− t)μ2) ≤ tψ (μ1) + (1− t)ψ (μ2) (1)

holds for all μ1, μ2 ∈ I and t ∈ [0, 1].
Definition 2: Let ψ : I → � be a real valued function and

s ∈ (0, 1] be fixed. A function ψ is said to be s–convex, if

ψ (tμ1 + (1− t)μ2) ≤ tsψ (μ1) + (1− t)
s
ψ (μ2) (2)

holds for all μ1, μ2 ∈ I and t ∈ [0, 1].
Many generalizations, variants and extensions for the

convexity have attracted the attention of many researchers,

see [26]–[29]. Any paper on Hermite inequalities seems

to be incomplete without mentioning the well–known

Hermite–Hadamard inequality.
Theorem 1: If ψ : I → � is a convex function for all

μ1, μ2 ∈ I, then

ψ

(
μ1 + μ2

2

)
≤ 1

μ2 − μ1

∫ μ2

μ1

ψ(x)dx ≤ ψ(μ1) + ψ(μ2)

2
.

(3)
Interested readers can refer to [1]–[6], [8]–[31].
Definition 3: [30] Let ψ ∈ L[μ1, μ2]. Then k–fractional

integrals of order α, k > 0 with μ1 ≥ 0 are defined by

Iα,k

μ+
1

ψ(x) =
1

kΓk(α)

∫ x

μ1

(x− t)
α
k −1ψ(t)dt, x > μ1 (4)
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and

Iα,k

μ−
2

ψ(x) =
1

kΓk(α)

∫ μ2

x

(t− x)
α
k −1ψ(t)dt, μ2 > x, (5)

where Γk(α+ k) = αΓk(α) is k–Gamma function.

For k = 1, k–fractional integrals become

Riemann–Liouville integrals. For α = k = 1, k–fractional

integrals become classical integrals. Motivated by the above

results and literatures, we will give in Section II, some

generalization integral inequalities of Hermite–Hadamard

type for functions whose derivatives are s–convex in modulus

by using k–fractional integrals. Some known versions will

be recovered as special cases from our results. We will note

that our inequalities can be viewed as new refinements of the

previous results. In Section III, some applications to special

means will be obtained. In Section IV, a brief conclusion will

be provided as well.

II. MAIN RESULTS

In order to obtain some results using s–convex functions,

we need the following Lemma 1:

Lemma 1: Let ψ : [μ1, μ2] → � be a differentiable function

on (μ1, μ2) with 0 ≤ μ1 < μ2. If ψ′ ∈ L[μ1, μ2], then for

λ ∈ (0, 1) and α, k > 0, the following equality for fractional

integrals hold:

λ
α
k (1− λ)

α
k ψ(λμ1 + (1− λ)μ2)−

Γk(α+ k)

(μ2 − μ1)
α
k

(6)

×
[
λ

α
k +1Iα,k

(λμ1+(1−λ)μ2)−
ψ(μ1) (7)

+(1− λ)
α
k +1Iα,k

(λμ1+(1−λ)μ2)+
ψ(μ2)

]
(8)

= λ
α
k +1(1− λ)

α
k +1(μ2 − μ1) (9)

×
[∫ 1

0

t
α
k ψ′[t(λμ1 + (1− λ)μ2) + (1− t)μ1

]
dt (10)

−
∫ 1

0

(1− t)
α
k ψ′[tμ2 + (1− t)(λμ1 + (1− λ)μ2)

]
dt

]
. (11)

Proof: Let us denote, respectively,

I1 =

∫ 1

0

t
α
k ψ′[t(λμ1 + (1− λ)μ2) + (1− t)μ1

]
dt (12)

and

I2 = −
∫ 1

0

(1−t)
α
k ψ′[tμ2+(1−t)(λμ1+(1−λ)μ2)

]
dt. (13)

Integrating by parts and changing the variables, we have

I1 =
t
α
k ψ

[
t(λμ1 + (1− λ)μ2) + (1− t)μ1

]
(1− λ)(μ2 − μ1)

∣∣∣1
0

(14)

−
α
k

(1− λ)(μ2 − μ1)
(15)

×
∫ 1

0

t
α
k −1ψ

[
t(λμ1 + (1− λ)μ2) + (1− t)μ1

]
dt (16)

=
ψ(λμ1 + (1− λ)μ2)

(1− λ)(μ2 − μ1)
(17)

− Γk(α+ k)

(1− λ)
α
k +1(μ2 − μ1)

α
k +1

Iα,k
(λμ1+(1−λ)μ2)−

ψ(μ1). (18)

Similarly, we get

I2 =
ψ(λμ1 + (1− λ)μ2)

λ(μ2 − μ1)
(19)

− Γk(α+ k)

λ
α
k +1(μ2 − μ1)

α
k +1

Iα,k
(λμ1+(1−λ)μ2)+

ψ(μ2). (20)

Adding I1 and I2 and multiplying by the factor λ
α
k +1(1 −

λ)
α
k +1(μ2 − μ1), we obtain the desired result.

Remark 1: Taking k = 1 in Lemma 1, we have ([31],

Lemma 2.1).

Remark 2: Choosing λ = 1
2 in Lemma 1, then we get

ψ

(
μ1 + μ2

2

)
− Γk(α+ k)

21−
α
k (μ2 − μ1)

α
k

(21)

×
[
Iα,k

(μ1+μ2
2 )

−ψ(μ1) + Iα,k

(μ1+μ2
2 )

+ψ(μ2)
]

(22)

=

(
μ2 − μ1

4

)
(23)

×
[∫ 1

0

t
α
k ψ′

(
t
μ1 + μ2

2
+ (1− t)μ1

)
dt (24)

−
∫ 1

0

(1− t)
α
k ψ′

(
tμ2 + (1− t)

μ1 + μ2

2

)
dt

]
. (25)

For brevity, we denote

Tψ(λ, α, k;μ1, μ2) := λ
α
k (1− λ)

α
k ψ(λμ1 + (1− λ)μ2) (26)

− Γk(α+ k)

(μ2 − μ1)
α
k

[
λ

α
k +1Iα,k

(λμ1+(1−λ)μ2)−
ψ(μ1) (27)

+(1− λ)
α
k +1Iα,k

(λμ1+(1−λ)μ2)+
ψ(μ2)

]
. (28)

Theorem 2: Let ψ : [μ1, μ2] → � be a differentiable

function on (μ1, μ2) with 0 ≤ μ1 < μ2. If |ψ′|q is s–convex

on [μ1, μ2] for s ∈ (0, 1] and q ≥ 1, then for λ ∈ (0, 1) and

α, k > 0, the following inequality for fractional integrals hold:

|Tψ(λ, α, k;μ1, μ2)| (29)

≤
(

k

α+ k

)1− 1
q

λ
α
k +1(1− λ)

α
k +1(μ2 − μ1) (30)

×
{[

β
(α
k
+ 1, s+ 1

)
|ψ′(μ1)|q (31)

+
k

α+ k(s+ 1)
|ψ′(λμ1 + (1− λ)μ2)|q

] 1
q

(32)

+
[
β
(α
k
+ 1, s+ 1

)
|ψ′(μ2)|q (33)

+
k

α+ k(s+ 1)
|ψ′(λμ1 + (1− λ)μ2)|q

] 1
q

}
, (34)
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where β(·, ·) is the well–known Euler Beta function.

Proof: Using Lemma 1, the well–known power mean

inequality, s–convexity of |ψ′|q and properties of modulus,

we have

|Tψ(λ, α, k;μ1, μ2)| (35)

≤ λ
α
k +1(1− λ)

α
k +1(μ2 − μ1) (36)

×
[∫ 1

0

t
α
k

∣∣ψ′[t(λμ1 + (1− λ)μ2) + (1− t)μ1

]∣∣dt (37)

+

∫ 1

0

(1− t)
α
k

∣∣ψ′[tμ2+(1− t)(λμ1+(1−λ)μ2)
]∣∣dt

]
(38)

≤ λ
α
k +1(1− λ)

α
k +1(μ2 − μ1) (39)

×
{(∫ 1

0

t
α
k dt

)1− 1
q

(40)

×
[∫ 1

0

t
α
k

[
ts|ψ′(λμ1 + (1− λ)μ2)|q (41)

+(1− t)s|ψ′(μ1)|q
]
dt

] 1
q

(42)

+

(∫ 1

0

(1− t)
α
k dt

)1− 1
q

(43)

×
[∫ 1

0

(1− t)
α
k

[
ts|ψ′(μ2)|q (44)

+(1− t)s|ψ′(λμ1 + (1− λ)μ2)|q
]
dt

] 1
q
}

(45)

=

(
k

α+ k

)1− 1
q

λ
α
k +1(1− λ)

α
k +1(μ2 − μ1) (46)

×
{[

β
(α
k
+ 1, s+ 1

)
|ψ′(μ1)|q (47)

+
k

α+ k(s+ 1)
|ψ′(λμ1 + (1− λ)μ2)|q

] 1
q

(48)

+
[
β
(α
k
+ 1, s+ 1

)
|ψ′(μ2)|q (49)

+
k

α+ k(s+ 1)
|ψ′(λμ1 + (1− λ)μ2)|q

] 1
q

}
. (50)

The proof of Theorem 2 is completed.

Corollary 1: Taking s = 1 in Theorem 2, we get

|Tψ(λ, α, k;μ1, μ2)| (51)

≤
(

k

α+ k

)1− 1
q

λ
α
k +1(1− λ)

α
k +1(μ2 − μ1) (52)

×
{[

β
(α
k
+ 1, 2

)
|ψ′(μ1)|q (53)

+
k

α+ 2k
|ψ′(λμ1 + (1− λ)μ2)|q

] 1
q

(54)

+
[
β
(α
k
+ 1, 2

)
|ψ′(μ2)|q (55)

+
k

α+ 2k
|ψ′(λμ1 + (1− λ)μ2)|q

] 1
q

}
. (56)

Remark 3: Taking k = 1 in Corollary 1, we obtain ([31],

Theorem 2.1).

Corollary 2: Choosing λ = 1
2 in Theorem 2, we have∣∣∣∣∣ψ

(
μ1 + μ2

2

)
− Γk(α+ k)

21−
α
k (μ2 − μ1)

α
k

(57)

×
[
Iα,k

(μ1+μ2
2 )

−ψ(μ1) + Iα,k

(μ1+μ2
2 )

+ψ(μ2)
]∣∣∣∣∣ (58)

≤
(

k

α+ k

)1− 1
q
(
1

4

)α
k +1

(μ2 − μ1) (59)

×
{[

β
(α
k
+ 1, s+ 1

)
|ψ′(μ1)|q (60)

+
k

α+ k(s+ 1)

∣∣∣ψ′
(
μ1 + μ2

2

) ∣∣∣q
] 1

q

(61)

+

[
β
(α
k
+ 1, s+ 1

)
|ψ′(μ2)|q (62)

+
k

α+ k(s+ 1)
|
∣∣∣ψ′

(
μ1 + μ2

2

) ∣∣∣q
] 1

q
}
. (63)

Corollary 3: Taking |ψ′| ≤ M in Theorem 2, we get

|Tψ(λ, α, k;μ1, μ2)| (64)

≤ 2M

(
k

α+ k

)1− 1
q

λ
α
k +1(1− λ)

α
k +1(μ2 − μ1) (65)

×
[
β
(α
k
+ 1, s+ 1

)
+

k

α+ k(s+ 1)

] 1
q

. (66)

Theorem 3: Let ψ : [μ1, μ2] → � be a differentiable

function on (μ1, μ2) with 0 ≤ μ1 < μ2. If |ψ′|q is s–convex

on [μ1, μ2] for s ∈ (0, 1] and 1
p + 1

q = 1 with q > 1, then for

λ ∈ (0, 1) and α, k > 0, the following inequality for fractional

integrals hold:

|Tψ(λ, α, k;μ1, μ2)| ≤ p

√
k

pα+ k

1
q
√
s+ 1

(67)

×λ
α
k +1(1− λ)

α
k +1(μ2 − μ1) (68)

×
{[

|ψ′(μ1)|q + |ψ′(λμ1 + (1− λ)μ2)|q
] 1

q

(69)

+
[
|ψ′(μ2)|q + |ψ′(λμ1 + (1− λ)μ2)|q

] 1
q

}
. (70)
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Proof: Using Lemma 1, Hölder’s inequality, s–convexity

of |ψ′|q and properties of modulus, we have

|Tψ(λ, α, k;μ1, μ2)| (71)

≤ λ
α
k +1(1− λ)

α
k +1(μ2 − μ1) (72)

×
[∫ 1

0

t
α
k

∣∣ψ′[t(λμ1 + (1− λ)μ2) + (1− t)μ1

]∣∣dt (73)

+

∫ 1

0

(1− t)
α
k

∣∣ψ′[tμ2+(1− t)(λμ1+(1−λ)μ2)
]∣∣dt

]
(74)

≤ λ
α
k +1(1− λ)

α
k +1(μ2 − μ1) (75)

×
{(∫ 1

0

t
pα
k dt

) 1
p

(76)

×
(∫ 1

0

[
ts|ψ′(λμ1 + (1− λ)μ2)|q + (1− t)s|ψ′(μ1)|q

]
dt

) 1
q

(77)

+

(∫ 1

0

(1− t)
pα
k dt

) 1
p

(78)

×
[∫ 1

0

[
ts|ψ′(μ2)|q (79)

+(1− t)s|ψ′(λμ1 + (1− λ)μ2)|q
]
dt

] 1
q
}

(80)

= p

√
k

pα+ k

1
q
√
s+ 1

(81)

×λ
α
k +1(1− λ)

α
k +1(μ2 − μ1) (82)

×
{[

|ψ′(μ1)|q + |ψ′(λμ1 + (1− λ)μ2)|q
] 1

q

(83)

+
[
|ψ′(μ2)|q + |ψ′(λμ1 + (1− λ)μ2)|q

] 1
q

}
. (84)

The proof of Theorem 3 is completed.

Corollary 4: Taking s = 1 in Theorem 3, we obtain

|Tψ(λ, α, k;μ1, μ2)| ≤
1
q
√
2

p

√
k

pα+ k
(85)

×λ
α
k +1(1− λ)

α
k +1(μ2 − μ1) (86)

×
{[

|ψ′(μ1)|q + |ψ′(λμ1 + (1− λ)μ2)|q
] 1

q

(87)

+
[
|ψ′(μ2)|q + |ψ′(λμ1 + (1− λ)μ2)|q

] 1
q

}
. (88)

Remark 4: Taking k = 1 in Corollary 4, we have ([31],

Theorem 2.2).

Corollary 5: Choosing λ = 1
2 in Theorem 3, we get∣∣∣∣∣ψ

(
μ1 + μ2

2

)
− Γk(α+ k)

21−
α
k (μ2 − μ1)

α
k

(89)

×
[
Iα,k

(μ1+μ2
2 )

−ψ(μ1) + Iα,k

(μ1+μ2
2 )

+ψ(μ2)
]∣∣∣∣∣ (90)

≤ p

√
k

pα+ k

1
q
√
s+ 1

(
1

4

)α
k +1

(μ2 − μ1) (91)

×
{[

|ψ′(μ1)|q +
∣∣∣ψ′

(
μ1 + μ2

2

) ∣∣∣q
] 1

q

(92)

+

[
|ψ′(μ2)|q +

∣∣∣ψ′
(
μ1 + μ2

2

) ∣∣∣q
] 1

q
}
. (93)

Corollary 6: Taking |ψ′| ≤ M in Theorem 3, we obtain

|Tψ(λ, α, k;μ1, μ2)| ≤ 2M p

√
k

pα+ k
q

√
2

s+ 1
(94)

×λ
α
k +1(1− λ)

α
k +1(μ2 − μ1). (95)

III. APPLICATIONS TO SPECIAL MEANS

We consider the following two special means for different

positive real numbers μ1 and μ2, where μ1 < μ2:

• The arithmetic mean:

A(μ1, μ2) =
μ1 + μ2

2
, (96)

• The generalized logarithmic mean:

Lr(μ1, μ2) =

[
μr+1
2 − μr+1

1

(r + 1)(μ2 − μ1)

] 1
r

, r ∈ � \ {−1, 0}.
(97)

Proposition 1: Let 0 < μ1 < μ2 and s ∈ (0, 1] be fixed.

Then for q ≥ 1 and λ ∈ (0, 1), we have∣∣∣2sλ(1− λ)As(λμ1, (1− λ)μ2) (98)

−λ2(1− λ)Ls
s(μ1, λμ1 + (1− λ)μ2) (99)

−λ(1− λ)2Ls
s(λμ1 + (1− λ)μ2, μ2)

∣∣∣ (100)

≤
(
1

2

)1− 1
q λ2(1− λ)2s

q
√
(s+ 1)(s+ 2)

(μ2 − μ1) (101)

×
{[

μ
q(s−1)
1 + 2q(s−1)(s+ 1)Aq(s−1)(λμ1, (1− λ)μ2)

] 1
q

(102)

+
[
μ
q(s−1)
2 + 2q(s−1)(s+ 1)Aq(s−1)(λμ1, (1− λ)μ2)

] 1
q

}
.

(103)

Proof: Taking ψ(x) = xs, x > 0 where s ∈ (0, 1] is

fixed and using Theorem 2, the result (98) is evident.
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Remark 5: Taking λ = 1
2 in Proposition 1, we get∣∣∣∣∣As(μ1, μ2)−

1

2

[
Ls
s

(
μ1,

μ1 + μ2

2

)
+ Ls

s

(
μ1 + μ2

2
, μ2

)] ∣∣∣∣∣
(104)

≤
(
1

2

)1− 1
q s

4 q
√

(s+ 1)(s+ 2)
(μ2 − μ1) (105)

×
{[

μ
q(s−1)
1 + (s+ 1)Aq(s−1)(μ1, μ2)

] 1
q

(106)

+
[
μ
q(s−1)
2 + (s+ 1)Aq(s−1)(μ1, μ2)

] 1
q

}
. (107)

Proposition 2: Let 0 < μ1 < μ2 and s ∈ (0, 1] be fixed.

Then for q > 1 and 1
p + 1

q = 1, where λ ∈ (0, 1), we obtain∣∣∣2sλ(1− λ)As(λμ1, (1− λ)μ2) (108)

−λ2(1− λ)Ls
s(μ1, λμ1 + (1− λ)μ2) (109)

−λ(1− λ)2Ls
s(λμ1 + (1− λ)μ2, μ2)

∣∣∣ (110)

≤ s

(
1

p+ 1

) 1
p
(

1

s+ 1

) 1
q

λ2(1− λ)2(μ2 − μ1) (111)

×
{[

μ
q(s−1)
1 + 2q(s−1)Aq(s−1)(λμ1, (1− λ)μ2)

] 1
q

(112)

+
[
μ
q(s−1)
2 + 2q(s−1)Aq(s−1)(λμ1, (1− λ)μ2)

] 1
q

}
. (113)

Proof: Taking ψ(x) = xs, x > 0 where s ∈ (0, 1] is

fixed and applying Theorem 3, the result (108) is obvious.

Remark 6: Taking λ = 1
2 in Proposition 2, we have∣∣∣∣∣As(μ1, μ2)−

1

2

[
Ls
s

(
μ1,

μ1 + μ2

2

)
+ Ls

s

(
μ1 + μ2

2
, μ2

)] ∣∣∣∣∣
(114)

≤ s

(
1

p+ 1

) 1
p
(

1

s+ 1

) 1
q (μ2 − μ1)

4
(115)

×
{[

μ
q(s−1)
1 +Aq(s−1)(μ1, μ2)

] 1
q

(116)

+
[
μ
q(s−1)
2 +Aq(s−1)(μ1, μ2)

] 1
q

}
. (117)

IV. CONCLUSION

In our study the obtained results can be viewed as

refinements of the previous results and also they have a deep

connection with various fractional integral operators. We hope

that current work using our idea and technique will attract the

attention of researchers working in mathematical analysis and

other related fields in pure and applied sciences.
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[13] M. Chudziak and M. Íołdak, Hermite–Hadamard and Fejér Inequalities
for Co-Ordinated (F,G)–Convex Functions on a Rectangle, Symmetry,
12(13) (2020).

[14] P. O. Mohammed and M. Z. Sarikaya, On generalized fractional integral
inequalities for twice differentiable convex functions, J. Comput. Appl.
Math., 372 Article 112740, (2020).

[15] P. O. Mohammed and I. Brevik, A New Version of the
Hermite–Hadamard Inequality for Riemann–Liouville Fractional
Integrals, Symmetry, 12(610) (2020).

[16] T.-Y. Zhang, A.-P. Ji and F. Qi, On Integral Inequalities of
Hermite–Hadamard Type for s–Geometrically Convex Functions, Abst.
Appl. Anal., 2012 Article 560586, (2012).

[17] T.-Y. Zhang, A.-P. Ji and F. Qi, Some inequalities of Hermite–Hadamard
type for GA–convex functions with applications to means, Le Mat., 68
(2013), 229–239.

[18] P. O. Mohammed, Some new Hermite–Hadamard type inequalities for
MT–convex functions on differentiable coordinates, J. King Saud Univ.
Sci., 30 (2018), 258–262.

[19] J. Han, P. O. Mohammed and H. Zeng, Generalized fractional integral
inequalities of Hermite–Hadamard-type for a convex function, Open
Math., 18 (2020), 794–806.

[20] D.-P. Shi, B.-Y. Xi and F. Qi, Hermite-Hadamard type inequalities
for Riemann–Liouville fractional integrals of (α,m)–convex functions,
Fract. Differ. Calc., 4 (2014), 31–43.

[21] F. Qi, P. O. Mohammed, J. C. Yao and Y. H. Yao, Generalized fractional
integral inequalities of Hermite–Hadamard type for (α,m)–convex
functions, J. Inequal. Appl., 2019(135) (2019).

[22] P. O. Mohammed and M. Z. Sarikaya, Hermite–Hadamard type
inequalities for F–convex function involving fractional integrals, J.
Inequal. Appl., 2018(359) (2018).

[23] D. Baleanu, P. O. Mohammed and S. Zeng, Inequalities of trapezoidal
type involving generalized fractional integrals, Alex. Eng. J., (2020).

[24] P. O. Mohammed, T. Abdeljawad, S. Zeng and A. Kashuri, Fractional
Hermite–Hadamard Integral Inequalities for a New Class of Convex
Functions, Symmetry, 12(1485) (2020).

[25] S. S. Dragomir and C. E. M. Pearce, Selected Topics on
Hermite–Hadamard Inequalities and Applications, RGMIA Monographs;
Victoria University: Footscray, Australia, 2000.

[26] G. Farid, X. Qiang and S. B. Akbar, Generalized fractional integrals
inequalities for exponentially (s,m)–convex functions, J. Inequal. Appl.,
(2020).

[27] A. Guessab and G. Schmeisser, Sharp integral inequalities of the
Hermite-Hadamard type, J. Approx. Theory, 115(2) (2002), 260–288.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:15, No:3, 2021 

22International Scholarly and Scientific Research & Innovation 15(3) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:1
5,

 N
o:

3,
 2

02
1 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
11

89
0.

pd
f



[28] A. Iqbal, M. A. Khan, S. Ullah and Y.-M. Chu, Some new
Hermite-Hadamard-type inequalities associated with conformable
fractional integrals and their applications, J. Funct. Spaces, 2020, Article
ID 9845407 (2020).

[29] Y. Khurshid, M. A. Khan and Y.-M. Chu, Conformable integral
inequalities of the Hermite–Hadamard type in terms of GG– and
GA–convexities, J. Funct. Spaces, 2019, Article ID 6926107 (2019).

[30] S. Mubeen and G. M. Habibullah, k–Fractional integrals and
applications, Int. J. Contemp. Math. Sci., 7 (2012), 89–94.

[31] M. Z. Sarikaya and H. Yaldiz, On generalized Hermite–Hadamard type
integral inequalities involving Riemann–Liouville fractional integrals,
Nihonkai Math. J., 25 (2014), 93–104.

Artion Kashuri received his PhD degree from
University “Ismail Qemali” of Vlora (2016) in
the area of Analysis and being his research in
Numerical Analysis, Mathematical Inequalities,
Mathematical Analysis, Applied Mathematics,
Quantum Calculus and Post–Quantum Calculus. He
has vast experience of teaching such as Differential
Equations, Numerical Analysis, Calculus, Linear
Algebra, Real Analysis, Complex Analysis,
Topology, etc. He has more than 70 published
papers in reputation international journals with high

impacts. His current position in the aforementioned University is Lecturer in
the Department of Mathematics.

Rozana Liko received her PhD degree from
University “Ismail Qemali” of Vlora (2018) in
the area of Statistics and Probability and being
her research in Numerical Analysis, Mathematical
Inequalities, Mathematical Analysis, Applied
Mathematics and Quantum Calculus. She has
vast experience of teaching such as Stochastic
Differential Equations, Probability, Statistics,
Calculus, Real Analysis, etc. She has more than 50
published papers in reputation international journals
with high impacts. Her current position in the

aforementioned University is Lecturer in the Department of Mathematics.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:15, No:3, 2021 

23International Scholarly and Scientific Research & Innovation 15(3) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:1
5,

 N
o:

3,
 2

02
1 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
11

89
0.

pd
f


