Search results for: Resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 757

Search results for: Resistance

157 UV-Cured Coatings Based on Acrylated Epoxidized Soybean Oil and Epoxy Carboxylate

Authors: Alaaddin Cerit, Suheyla Kocaman, Ulku Soydal

Abstract:

During the past two decades, photoinitiated polymerization has been attracting a great interest in terms of scientific and industrial activity. The wide recognition of UV treatment in the polymer industry results not only from its many practical applications but also from its advantage for low-cost processes. Unlike most thermal curing systems, radiation-curable systems can polymerize at room temperature without additional heat, and the curing is completed in a very short time. The advantage of cationic UV technology is that post-cure can continue in the ‘dark’ after radiation. In this study, bio-based acrylated epoxidized soybean oil (AESO) was cured with UV radiation using radicalic photoinitiator Irgacure 184. Triarylsulphonium hexafluoroantimonate was used as cationic photoinitiator for curing of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate. The effect of curing time and the amount of initiators on the curing degree and thermal properties were investigated. The thermal properties of the coating were analyzed after crosslinking UV irradiation. The level of crosslinking in the coating was evaluated by FTIR analysis. Cationic UV-cured coatings demonstrated excellent adhesion and corrosion resistance properties. Therefore, our study holds a great potential with its simple and low-cost applications.

Keywords: Acrylated epoxidized soybean oil, epoxy carboxylate, thermal properties, UV-curing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
156 Test of Moisture Sensor Activation Speed

Authors: I. Parkova, A. Vališevskis, A. Viļumsone

Abstract:

Nocturnal enuresis or bed-wetting is intermittent incontinence during sleep of children after age 5 that may precipitate wide range of behavioral and developmental problems. One of the non-pharmacological treatment methods is the use of a bed-wetting alarm system. In order to improve comfort conditions of nocturnal enuresis alarm system, modular moisture sensor should be replaced by a textile sensor. In this study behavior and moisture detection speed of woven and sewn sensors were compared by analyzing change in electrical resistance after solution (salt water) was dripped on sensor samples. Material of samples has different structure and yarn location, which affects solution detection rate. Sensor system circuit was designed and two sensor tests were performed: system activation test and false alarm test to determine the sensitivity of the system and activation threshold. Sewn sensor had better result in system’s activation test – faster reaction, but woven sensor had better result in system’s false alarm test – it was less sensitive to perspiration simulation. After experiments it was found that the optimum switching threshold is 3V in case of 5V input voltage, which provides protection against false alarms, for example – during intensive sweating.

Keywords: Conductive yarns, moisture textile sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2298
155 Experimental Study of Geotextile Effect on Improving Soil Bearing Capacity in Aggregate Surfaced Roads

Authors: Mahdi Taghipour Masoumi, Ali Abdi Kordani, Mahmoud Nazirizad

Abstract:

Geosynthetics utilization plays an important role in the construction of highways with no additive layers, such as asphalt concrete or cement concrete, or in a subgrade layer which affects the bearing capacity of unbounded layers. This laboratory experimental study was carried out to evaluate changes in the load bearing capacity of reinforced soil with these materials in highway roadbed with regard to geotextile properties. California Bearing Ratio (CBR) test samples were prepared with two types of soil: Clayey and sandy containing non-reinforced and reinforced soil. The samples comprised three types of geotextiles with different characteristics (150, 200, 300 g/m2) and depths (H= 5, 10, 20, 30, 50, 100 mm), and were grouped into two forms, one-layered and two-layered, based on the sample materials in order to perform defined tests. The results showed that the soil bearing characteristics increased when one layer of geotextile was used in clayey and sandy samples reinforced by geotextile. However, the bearing capacity of the soil, in the presence of a geotextile layer material with depth of more than 30 mm, had no remarkable effect. Furthermore, when the two-layered geotextile was applied in material samples, although it increased the soil resistance, it also showed that through the addition of a number or weights of geotextile into samples, the natural composition of the soil changed and the results are unreliable.

Keywords: Reinforced soil, geosynthetics, geotextile, transportation capacity, CBR experiments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2537
154 Development of Light-Weight Fibre-Based Materials for Building Envelopes

Authors: René Čechmánek, Vladan Prachař, Ludvík Lederer, Jiří Loskot

Abstract:

Thin-walled elements with a matrix set on a base of high-valuable Portland cement with dispersed reinforcement from alkali-resistant glass fibres are used in a range of applications as claddings of buildings and infrastructure constructions as well as various architectural elements of residential buildings. Even though their elementary thickness and therefore total weight is quite low, architects and building companies demand on even further decreasing of the bulk density of these fibre-cement elements for the reason of loading elimination of connected superstructures and easier assembling in demand conditions. By the means of various kinds of light-weight aggregates it is possible to achieve light-weighing of these composite elements. From the range of possible fillers with different material properties granulated expanded glass worked the best. By the means of laboratory testing an effect of two fillers based on expanded glass on the fibre reinforced cement composite was verified. Practical applicability was tested in the production of commonly manufactured glass fibre reinforced concrete elements, such as channels for electrical cable deposition, products for urban equipment and especially various cladding elements. Even though these are not structural elements, it is necessary to evaluate also strength characteristics and resistance to environment for their durability in certain applications.

Keywords: Fibre-cement composite, granulated expanded glass, light-weighing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
153 Incorporation Mechanism of Stabilizing Simulated Lead-Laden Sludge in Aluminum-Rich Ceramics

Authors: Xingwen Lu, Kaimin Shih

Abstract:

This study investigated a strategy of blending lead-laden sludge and Al-rich precursors to reduce the release of metals from the stabilized products. Using PbO as the simulated lead-laden sludge to sinter with γ-Al2O3 by Pb:Al molar ratios of 1:2 and 1:12, PbAl2O4 and PbAl12O19 were formed as final products during the sintering process, respectively. By firing the PbO + γ-Al2O3 mixtures with different Pb/Al molar ratios at 600 to 1000 °C, the lead transformation was determined through X-ray diffraction (XRD) data. In Pb/Al molar ratio of 1/2 system, the formation of PbAl2O4 is initiated at 700 °C, but an effective formation was observed above 750 °C. An intermediate phase, Pb9Al8O21, was detected in the temperature range of 800-900 °C. However, different incorporation behavior for sintering PbO with Al-rich precursors at a Pb/Al molar ratio of 1/12 was observed during the formation of PbAl12O19 in this system. In the sintering process, both temperature and time effect on the formation of PbAl2O4 and PbAl12O19 phases were estimated. Finally, a prolonged leaching test modified from the U.S. Environmental Protection Agency-s toxicity characteristic leaching procedure (TCLP) was used to evaluate the durability of PbO, Pb9Al8O21, PbAl2O4 and PbAl12O19 phases. Comparison for the leaching results of the four phases demonstrated the higher intrinsic resistance of PbAl12O19 against acid attack.

Keywords: Sludge, Lead, Stabilization, Leaching behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
152 A Textual Analysis of Prospective Teachers’ Social Justice Identity Development and LGBTQ Advocacy

Authors: Mi Ok Kang

Abstract:

This study examined the influences of including LGBTQ-related content in a multicultural teacher education course on the development of prospective teachers’ social justice identities. Appling a content analysis to 53 reflection texts written by participating prospective teachers in response to the relevant course content, this study deduced the stages of social justice identity development (naïve, acceptance, resistance, redefinition, and internalization) that participants reached during the course. The analysis demonstrated that the participants reached various stages in the social identity development model and none of the participants remained at the naïve stage during/after class. The majority (53%) of the participants reached the internalization stage during the coursework and became conscious about the heterosexual privileges they have had and aware of possible impacts of such privilege on their future LGBTQ students. Also the participants had begun to develop pedagogic action plans and devised applicable teaching strategies for their future students based on the new understanding of heteronormativity. We expect this study will benefit teacher educators and educational administrators who want to address LGBTQ-related issues in their multicultural education programs and/or revisit the goals, directions, and implications of their approach.

Keywords: LGBTQ, heteronormativity, social justice identity, teacher education, multicultural education, content analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1367
151 Conversion in Chemical Reactors using Hollow Cylindrical Catalyst Pellet

Authors: Mohammad Asif

Abstract:

Heterogeneous catalysis is vital for a number of chemical, refinery and pollution control processes. The use of catalyst pellets of hollow cylindrical shape provide several distinct advantages over other common shapes, and can therefore help to enhance conversion levels in reactors. A better utilization of the catalytic material is probably most notable of these features due to the absence of the pellet core, which helps to significantly lower the effect of the internal transport resistance. This is reflected in the enhancement of the effectiveness factor. For the case of the first order irreversible kinetics, a substantial increase in the effectiveness factor can be obtained by varying shape parameters. Important shape parameters of a finite hollow cylinder are the ratio of the inside to the outside radii (κ) and the height to the diameter ratio (γ). A high value of κ the generally helps to enhance the effectiveness factor. On the other hand, lower values of the effectiveness factors are obtained when the dimension of the height and the diameter are comparable. Thus, the departure of parameter γ from the unity favors higher effectiveness factor. Since a higher effectiveness factor is a measure of a greater utilization of the catalytic material, higher conversion levels can be achieved using the hollow cylindrical pellets possessing optimized shape parameters.

Keywords: Finite hollow cylinder, Catalyst pellet, Effectiveness factor, Thiele Modulus, Conversion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3662
150 Mechanical Properties and Chloride Diffusion of Ceramic Waste Aggregate Mortar Containing Ground Granulated Blast–Furnace Slag

Authors: H. Higashiyama, M. Sappakittipakorn, M. Mizukoshi, O. Takahashi

Abstract:

Ceramic Waste Aggregates (CWAs) were made from electric porcelain insulator wastes supplied from an electric power company, which were crushed and ground to fine aggregate sizes. In this study, to develop the CWA mortar as an eco–efficient, ground granulated blast–furnace slag (GGBS) as a Supplementary Cementitious Material (SCM) was incorporated. The water–to–binder ratio (W/B) of the CWA mortars was varied at 0.4, 0.5, and 0.6. The cement of the CWA mortar was replaced by GGBS at 20 and 40% by volume (at about 18 and 37% by weight). Mechanical properties of compressive and splitting tensile strengths, and elastic modulus were evaluated at the age of 7, 28, and 91 days. Moreover, the chloride ingress test was carried out on the CWA mortars in a 5.0% NaCl solution for 48 weeks. The chloride diffusion was assessed by using an electron probe microanalysis (EPMA). To consider the relation of the apparent chloride diffusion coefficient and the pore size, the pore size distribution test was also performed using a mercury intrusion porosimetry at the same time with the EPMA. The compressive strength of the CWA mortars with the GGBS was higher than that without the GGBS at the age of 28 and 91 days. The resistance to the chloride ingress of the CWA mortar was effective in proportion to the GGBS replacement level.

Keywords: Ceramic waste aggregate, Chloride diffusion, GGBS, Pore size distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
149 Settlement Analysis of Axially Loaded Bored Piles: A Case History

Authors: M. Mert, M. T. Ozkan

Abstract:

Pile load tests should be applied to check the bearing capacity calculations and to determine the settlement of the pile corresponding to test load. Strain gauges can be installed into pile in order to determine the shaft resistance of the piles for every soil layer respectively. Detailed results can be obtained by means of strain gauges placed at certain levels into test piles. In the scope of this study, pile load test data obtained from two different projects are examined.  Instrumented static pile load tests were applied on totally 7 test bored piles of different diameters (80 cm, 150 cm, and 200 cm) and different lengths (between 30-76 m) in two different project site. Settlement analysis of test piles is done by using some of load transfer methods and finite element method. Plaxis 3D which is a three-dimensional finite element program is also used for settlement analysis of the test piles. In this study, firstly bearing capacity of test piles are determined and compared with strain gauge data which is required for settlement analysis. Then, settlement values of the test piles are estimated by using load transfer methods developed in recent years and finite element method. The aim of this study is to show similarities and differences between the results obtained from settlement analysis methods and instrumented pile load tests.

Keywords: Failure, finite element method, monitoring and instrumentation, pile, settlement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 919
148 Dynamic Modeling of Intelligent Air-Cushion Tracked Vehicle for Swamp Peat

Authors: Altab Hossain, Ataur Rahman, A. K. M. Mohiuddin, Yulfian Aminanda

Abstract:

Modeling of the dynamic behavior and motion are renewed interest in the improved tractive performance of an intelligent air-cushion tracked vehicle (IACTV). This paper presents a new dynamical model for the forces on the developed small scale intelligent air-cushion tracked vehicle moving over swamp peat. The air cushion system partially supports the 25 % of vehicle total weight in order to make the vehicle ground contact pressure 7 kN/m2. As the air-cushion support system can adjust automatically on the terrain, so the vehicle can move over the terrain without any risks. The springdamper system is used with the vehicle body to control the aircushion support system on any undulating terrain by making the system sinusoidal form. Experiments have been carried out to investigate the relationships among tractive efficiency, slippage, traction coefficient, load distribution ratio, tractive effort, motion resistance and power consumption in given terrain conditions. Experiment and simulation results show that air-cushion system improves the vehicle performance by keeping traction coefficient of 71% and tractive efficiency of 62% and the developed model can meet the demand of transport efficiency with the optimal power consumption.

Keywords: Air-cushion system, ground contact pressure, slippage, power consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
147 Inhibitory Effect of Helichrysum arenarium Essential Oil on the Growth of Food Contaminated Microorganisms

Authors: Ali Mohamadi Sani

Abstract:

The aim of this study was to determine the antimicrobial effect of Helichrysum arenarium L. essential oil in "in-vitro" condition on the growth of seven microbial species including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Saccharomyces cereviciae, Candida albicans, Aspergillus flavus and Aspergillus parasiticus using micro-dilution method. The minimum inhibitory concentration (MIC) and minimum bactericidal or fungicidal concentration (MBC, MFC) were determined for the essential oil at ten concentrations. Finally, the sensitivity of tested microbes to essential oil of H. arenarium was investigated. Results showed that Bacillus subtilis (MIC=781.25 and MBC=6250 µg/ml) was more resistance than two other bacterial species. Among the tested yeasts, Saccharomyces cereviciae (MIC=97.65 and MFC=781.25 µg/ml) was more sensitive than Candida albicans while among the fungal species, growth of Aspergillus parasiticus inhibited at lower concentration of oil than the Aspergillus flavus. The extracted essential oil exhibited the same MIC value in the liquid medium against all fungal strains (48.82 µg/ml), while different activity against A. flavus and A. parasiticus was observed in this medium with MFC values of 6250 and 390.625µg/ml, respectively. The results of the present study indicated that Helichrysum arenarium L essential oil had significant (P<0.05) antimicrobial activity; therefore, it can be used as a natural preservation to increase the shelf life of food products.

 

Keywords: Helichrysum arenarium, Antimicrobial agent, Essential oil, MIC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2798
146 Introduce Applicability of Multi-Layer Perceptron to Predict the Behaviour of Semi-Interlocking Masonry Panel

Authors: O. Zarrin, M. Ramezanshirazi

Abstract:

The Semi Interlocking Masonry (SIM) system has been developed in Masonry Research Group at the University of Newcastle, Australia. The main purpose of this system is to enhance the seismic resistance of framed structures with masonry panels. In this system, SIM panels dissipate energy through the sliding friction between rows of SIM units during earthquake excitation. This paper aimed to find the applicability of artificial neural network (ANN) to predict the displacement behaviour of the SIM panel under out-of-plane loading. The general concept of ANN needs to be trained by related force-displacement data of SIM panel. The overall data to train and test the network are 70 increments of force-displacement from three tests, which comprise of none input nodes. The input data contain height and length of panels, height, length and width of the brick and friction and geometry angle of brick along the compressive strength of the brick with the lateral load applied to the panel. The aim of designed network is prediction displacement of the SIM panel by Multi-Layer Perceptron (MLP). The mean square error (MSE) of network was 0.00042 and the coefficient of determination (R2) values showed the 0.91. The result revealed that the ANN has significant agreement to predict the SIM panel behaviour.

Keywords: Semi interlocking masonry, artificial neural network, ANN, multi-layer perceptron, MLP, displacement, prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760
145 Adhesive Connections in Timber: A Comparison between Rough and Smooth Wood Bonding Surfaces

Authors: Valentina Di Maria, Anton Ianakiev

Abstract:

The use OF adhesive anchors for wooden constructions is an efficient technology to connect and design timber members in new timber structures and to rehabilitate the damaged structural members of historical buildings. Due to the lack of standard regulation in this specific area of structural design, designers’ choices are still supported by test analysis that enables knowledge, and the prediction, of the structural behaviour of glued in rod joints. The paper outlines an experimental research activity aimed at identifying the tensile resistance capacity of several new adhesive joint prototypes made of epoxy resin, steel bar and timber, Oak and Douglas Fir species. The development of new adhesive connectors has been carried out by using epoxy to glue stainless steel bars into pre-drilled holes, characterised by smooth and rough internal surfaces, in timber samples. The realization of a threaded contact surface using a specific drill bit has led to an improved bond between wood and epoxy. The applied changes have also reduced the cost of the joints’ production. The paper presents the results of this parametric analysis and a Finite Element analysis that enables identification and study of the internal stress distribution in the proposed adhesive anchors.

Keywords: Glued in rod joints, adhesive anchors, timber, epoxy, rough contact surface, threaded hole shape.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3272
144 Evaluation of Deformable Boundary Condition Using Finite Element Method and Impact Test for Steel Tubes

Authors: Abed Ahmed, Mehrdad Asadi, Jennifer Martay

Abstract:

Stainless steel pipelines are crucial components to transportation and storage in the oil and gas industry. However, the rise of random attacks and vandalism on these pipes for their valuable transport has led to more security and protection for incoming surface impacts. These surface impacts can lead to large global deformations of the pipe and place the pipe under strain, causing the eventual failure of the pipeline. Therefore, understanding how these surface impact loads affect the pipes is vital to improving the pipes’ security and protection. In this study, experimental test and finite element analysis (FEA) have been carried out on EN3B stainless steel specimens to study the impact behaviour. Low velocity impact tests at 9 m/s with 16 kg dome impactor was used to simulate for high momentum impact for localised failure. FEA models of clamped and deformable boundaries were modelled to study the effect of the boundaries on the pipes impact behaviour on its impact resistance, using experimental and FEA approach. Comparison of experimental and FE simulation shows good correlation to the deformable boundaries in order to validate the robustness of the FE model to be implemented in pipe models with complex anisotropic structure.

Keywords: Dynamic impact, deformable boundary conditions, finite element modeling, FEM, finite element, FE, LS-DYNA, Stainless steel pipe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 632
143 Low Value Capacitance Measurement System with Adjustable Lead Capacitance Compensation

Authors: Gautam Sarkar, Anjan Rakshit, Amitava Chatterjee, Kesab Bhattacharya

Abstract:

The present paper describes the development of a low cost, highly accurate low capacitance measurement system that can be used over a range of 0 – 400 pF with a resolution of 1 pF. The range of capacitance may be easily altered by a simple resistance or capacitance variation of the measurement circuit. This capacitance measurement system uses quad two-input NAND Schmitt trigger circuit CD4093B with hysteresis for the measurement and this system is integrated with PIC 18F2550 microcontroller for data acquisition purpose. The microcontroller interacts with software developed in the PC end through USB architecture and an attractive graphical user interface (GUI) based system is developed in the PC end to provide the user with real time, online display of capacitance under measurement. The system uses a differential mode of capacitance measurement, with reference to a trimmer capacitance, that effectively compensates lead capacitances, a notorious error encountered in usual low capacitance measurements. The hysteresis provided in the Schmitt-trigger circuits enable reliable operation of the system by greatly minimizing the possibility of false triggering because of stray interferences, usually regarded as another source of significant error. The real life testing of the proposed system showed that our measurements could produce highly accurate capacitance measurements, when compared to cutting edge, high end digital capacitance meters.

Keywords: Capacitance measurement, NAND Schmitt trigger, microcontroller, GUI, lead compensation, hysteresis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7328
142 Investigation of Different Stimulation Patterns to Reduce Muscle Fatigue during Functional Electrical Stimulation

Authors: R. Ruslee, H. Gollee

Abstract:

Functional electrical stimulation (FES) is a commonly used technique in rehabilitation and often associated with rapid muscle fatigue which becomes the limiting factor in its applications. The objective of this study is to investigate the effects on the onset of fatigue of conventional synchronous stimulation, as well as asynchronous stimulation that mimic voluntary muscle activation targeting different motor units which are activated sequentially or randomly via multiple pairs of stimulation electrodes. We investigate three different approaches with various electrode configurations, as well as different patterns of stimulation applied to the gastrocnemius muscle: Conventional Synchronous Stimulation (CSS), Asynchronous Sequential Stimulation (ASS) and Asynchronous Random Stimulation (ARS). Stimulation was applied repeatedly for 300 ms followed by 700 ms of no-stimulation with 40 Hz effective frequency for all protocols. Ten able-bodied volunteers (28±3 years old) participated in this study. As fatigue indicators, we focused on the analysis of Normalized Fatigue Index (NFI), Fatigue Time Interval (FTI) and pre-post Twitch-Tetanus Ratio (ΔTTR). The results demonstrated that ASS and ARS give higher NFI and longer FTI confirming less fatigue for asynchronous stimulation. In addition, ASS and ARS resulted in higher ΔTTR than conventional CSS. In this study, we proposed a randomly distributed stimulation method for the application of FES and investigated its suitability for reducing muscle fatigue compared to previously applied methods. The results validated that asynchronous stimulation reduces fatigue, and indicates that random stimulation may improve fatigue resistance in some conditions.

Keywords: Asynchronous stimulation, electrode configuration, functional electrical stimulation, muscle fatigue, pattern stimulation, random stimulation, sequential stimulation, synchronous stimulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1197
141 A Review on Factors Influencing Implementation of Secure Software Development Practices

Authors: Sri Lakshmi Kanniah, Mohd Naz’ri Mahrin

Abstract:

More and more businesses and services are depending on software to run their daily operations and business services. At the same time, cyber-attacks are becoming more covert and sophisticated, posing threats to software. Vulnerabilities exist in the software due to the lack of security practices during the phases of software development. Implementation of secure software development practices can improve the resistance to attacks. Many methods, models and standards for secure software development have been developed. However, despite the efforts, they still come up against difficulties in their deployment and the processes are not institutionalized. There is a set of factors that influence the successful deployment of secure software development processes. In this study, the methodology and results from a systematic literature review of factors influencing the implementation of secure software development practices is described. A total of 44 primary studies were analysed as a result of the systematic review. As a result of the study, a list of twenty factors has been identified. Some of factors that affect implementation of secure software development practices are: Involvement of the security expert, integration between security and development team, developer’s skill and expertise, development time and communication between stakeholders. The factors were further classified into four categories which are institutional context, people and action, project content and system development process. The results obtained show that it is important to take into account organizational, technical and people issues in order to implement secure software development initiatives.

Keywords: Secure software development, software development, software security, systematic literature review.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2418
140 Development of Cellulose Panels with Porous Structure for Sustainable Building Insulation

Authors: P. Garbagnoli, M. Musitelli, B. Del Curto, MP. Pedeferri

Abstract:

The study and development of an innovative material for building insulation is really important for a sustainable society in order to improve comfort and reducing energy consumption. The aim of this work is the development of insulating panels for sustainable buildings based on an innovative material made by cardboard and Phase Change Materials (PCMs). The research has consisted in laboratory tests whose purpose has been the obtaining of the required properties for insulation panels: lightweight, porous structures and mechanical resistance. PCMs have been used for many years in the building industry as smart insulation technology because of their properties of storage and release high quantity of latent heat at useful specific temperatures [1]- [2]. The integration of PCMs into cellulose matrix during the waste paper recycling process has been developed in order to obtain a composite material. Experiments on the productive process for the realization of insulating panels were done in order to make the new material suitable for building application. The addition of rising agents demonstrated the possibility to obtain a lighter structure with better insulation properties. Several tests were conducted to verify the new panel properties. The results obtained have shown the possibility to realize an innovative and sustainable material suitable to replace insulating panels currently used.

Keywords: Sustainability, recycling, waste cardboard, PCM, cladding system, insulating materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244
139 Detection and Classification of Faults on Parallel Transmission Lines Using Wavelet Transform and Neural Network

Authors: V.S.Kale, S.R.Bhide, P.P.Bedekar, G.V.K.Mohan

Abstract:

The protection of parallel transmission lines has been a challenging task due to mutual coupling between the adjacent circuits of the line. This paper presents a novel scheme for detection and classification of faults on parallel transmission lines. The proposed approach uses combination of wavelet transform and neural network, to solve the problem. While wavelet transform is a powerful mathematical tool which can be employed as a fast and very effective means of analyzing power system transient signals, artificial neural network has a ability to classify non-linear relationship between measured signals by identifying different patterns of the associated signals. The proposed algorithm consists of time-frequency analysis of fault generated transients using wavelet transform, followed by pattern recognition using artificial neural network to identify the type of the fault. MATLAB/Simulink is used to generate fault signals and verify the correctness of the algorithm. The adaptive discrimination scheme is tested by simulating different types of fault and varying fault resistance, fault location and fault inception time, on a given power system model. The simulation results show that the proposed scheme for fault diagnosis is able to classify all the faults on the parallel transmission line rapidly and correctly.

Keywords: Artificial neural network, fault detection and classification, parallel transmission lines, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2958
138 Effects of Initial Moisture Content on the Physical and Mechanical Properties of Norway Spruce Briquettes

Authors: Miloš Matúš, Peter Križan, Ľubomír Šooš, Juraj Beniak

Abstract:

The moisture content of densified biomass is a limiting parameter influencing the quality of this solid biofuel. It influences its calorific value, density, mechanical strength and dimensional stability as well as affecting its production process. This paper deals with experimental research into the effect of moisture content of the densified material on the final quality of biofuel in the form of logs (briquettes or pellets). Experiments based on the singleaxis densification of the spruce sawdust were carried out with a hydraulic piston press (piston and die), where the densified logs were produced at room temperature. The effect of moisture content on the qualitative properties of the logs, including density, change of moisture, expansion and physical changes, and compressive and impact resistance were studied. The results show the moisture ranges required for producing good-quality logs. The experiments were evaluated and the moisture content of the tested material was optimized to achieve the optimum value for the best quality of the solid biofuel. The dense logs also have high-energy content per unit volume. The research results could be used to develop and optimize industrial technologies and machinery for biomass densification to achieve high quality solid biofuel.

Keywords: Biomass, briquettes, densification, fuel quality, moisture content, density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2729
137 Assessment of Ultra-High Cycle Fatigue Behavior of EN-GJL-250 Cast Iron Using Ultrasonic Fatigue Testing Machine

Authors: Saeedeh Bakhtiari, Johannes Depessemier, Stijn Hertelé, Wim De Waele

Abstract:

High cycle fatigue comprising up to 107 load cycles has been the subject of many studies, and the behavior of many materials was recorded adequately in this regime. However, many applications involve larger numbers of load cycles during the lifetime of machine components. In this ultra-high cycle regime, other failure mechanisms play, and the concept of a fatigue endurance limit (assumed for materials such as steel) is often an oversimplification of reality. When machine component design demands a high geometrical complexity, cast iron grades become interesting candidate materials. Grey cast iron is known for its low cost, high compressive strength, and good damping properties. However, the ultra-high cycle fatigue behavior of cast iron is poorly documented. The current work focuses on the ultra-high cycle fatigue behavior of EN-GJL-250 (GG25) grey cast iron by developing an ultrasonic (20 kHz) fatigue testing system. Moreover, the testing machine is instrumented to measure the temperature and the displacement of  the specimen, and to control the temperature. The high resonance frequency allowed to assess the  behavior of the cast iron of interest within a matter of days for ultra-high numbers of cycles, and repeat the tests to quantify the natural scatter in fatigue resistance.

Keywords: GG25, cast iron, ultra-high cycle fatigue, ultrasonic test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
136 Effects of Different Dietary Crude Fiber Levels on the Growth Performance of Finishing Su-Shan Pigs

Authors: Li Bixia, Ren Shouwen, Fu Yanfeng, Tu Feng, Xiaoming Fang, Xueming Wang

Abstract:

The utilization of dietary crude fiber in different breed pigs is not the same. Su-shan pigs are a new breed formed by crossing Taihu pigs and Yorkshire pigs. In order to understand the resistance of Su-shan pigs to dietary crude fiber, 150 Su-shan pigs with 60 kg of average body weight and similar body conditions were allocated to three groups randomly, and there are 50 pigs in each group. The percentages of dietary crude fiber were 8.35%, 9.10%, and 11.39%, respectively. At the end of the experiment, 15 pigs randomly selected from each group were slaughtered. The results showed as follows: average daily gain of the 9.10% group was higher than that of the 8.35% group and the 11.39% group; there was a significant difference between the 9.10% group and the 8.35% group (p < 0.05. Levels of urea nitrogen, total cholesterol and high density lipoprotein in the 9.10% group were significantly higher than those in the 8.35% group and the 11.39% group (p < 0.05). Ratios of meat to fat in the 9.10% group and the 11.39% group were significantly higher than that in the 8.35% group (p < 0.05). Lean percentage of 9.10% group was higher than that of 8.35% group and 11.39% group, but there was no significant difference in three groups (p > 0.05). The weight of small intestine and large intestine in the 11.39% group was higher than that in the 8.35% group, and the 9.10% group and the difference reached a significant level (p < 0.05). In conclusion, increasing dietary crude fiber properly could reduce fat percentage, and improve the ratio of meat to fat of finishing Su-shan pigs. The digestion and metabolism of dietary crude fiber promoted the development of stomach and intestine of finishing Su-shan pig.

Keywords: Su-Shan pigs, dietary crude fiber, growth performance, serum biochemical indexes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910
135 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks

Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian

Abstract:

Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.

Keywords: Lateral bearing capacity, short pile, clayey soil, artificial neural network, Imperialist competition algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 859
134 The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application

Authors: Ahmad Aroziki Abdul Aziz, Sakinah Mohd Alauddin, Ruzitah Mohd Salleh, Mohammed Iqbal Shueb

Abstract:

This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/Poly (ethylene-co vinyl acetate) (EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nanocomposite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25oC) and (480 ± 25oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1oC) and captured double melting point at 84 (±2oC) and 108 (±2oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.

Keywords: Cable and Wire, LDPE/EVA, Nano MH, Nano Particles, Thermal properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2995
133 Tool Wear of Aluminum/Chromium/Tungsten-Based-Coated Cemented Carbide Tools in Cutting Sintered Steel

Authors: Tadahiro Wada, Hiroyuki Hanyu

Abstract:

In this study, to clarify the effectiveness of an aluminum/chromium/tungsten-based-coated tool for cutting sintered steel, tool wear was experimentally investigated. The sintered steel was turned with the (Al60,Cr25,W15)N-, (Al60,Cr25,W15)(C,N)- and (Al64,Cr28,W8)(C,N)-coated cemented carbide tools according to the physical vapor deposition (PVD) method. Moreover, the tool wear of the aluminum/chromium/tungsten-based-coated item was compared with that of the (Al,Cr)N coated tool. Furthermore, to clarify the tool wear mechanism of the aluminum/chromium/tungsten-coating film for cutting sintered steel, Scanning Electron Microscope observation and Energy Dispersive x-ray Spectroscopy mapping analysis were conducted on the abraded surface. The following results were obtained: (1) The wear progress of the (Al64,Cr28,W8)(C,N)-coated tool was the slowest among that of the five coated tools. (2) Adding carbon (C) to the aluminum/chromium/tungsten-based-coating film was effective for improving the wear-resistance. (3) The main wear mechanism of the (Al60,Cr25,W15)N-, the (Al60,Cr25,W15)(C,N)- and the (Al64,Cr28,W8)(C,N)-coating films was abrasive wear.

Keywords: Cutting, physical vapor deposition coating method, tool wear, tool wear mechanism, sintered steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
132 Influence of Concrete Cracking in the Tensile Strength of Cast-in Headed Anchors

Authors: W. Nataniel, B. Lima, J. Manoel, M. P. Filho, H. Marcos, Oliveira Mauricio, P. Ferreira

Abstract:

Headed reinforcement bars are increasingly used for anchorage in concrete structures. Applications include connections in composite steel-concrete structures, such as beam-column joints, in several strengthening situations as well as in more traditional uses in cast-in-place and precast structural systems. This paper investigates the reduction in the ultimate tensile capacity of embedded cast-in headed anchors due to concrete cracking. A series of nine laboratory tests are carried out to evaluate the influence of cracking on the concrete breakout strength in tension. The experimental results show that cracking affects both the resistance and load-slip response of the headed bar anchors. The strengths measured in these tests are compared to theoretical resistances calculated following the recommendations presented by fib Bulletin no. 58 (2011), ETAG 001 (2010) and ACI 318 (2014). The influences of parameters such as the effective embedment depth (hef), bar diameter (ds), and the concrete compressive strength (fc) are analysed and discussed. The theoretical recommendations are shown to be over-conservative for both embedment depths and were, in general, inaccurate in comparison to the experimental trends. The ACI 318 (2014) was the design code which presented the best performance regarding to the predictions of the ultimate load, with an average of 1.42 for the ratio between the experimental and estimated strengths, standard deviation of 0.36, and coefficient of variation equal to 0.25.

Keywords: Cast-in headed anchors, concrete cone failure, uncracked concrete, cracked concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 614
131 Optimum Design of Steel Space Frames by Hybrid Teaching-Learning Based Optimization and Harmony Search Algorithms

Authors: Alper Akın, İbrahim Aydoğdu

Abstract:

This study presents a hybrid metaheuristic algorithm to obtain optimum designs for steel space buildings. The optimum design problem of three-dimensional steel frames is mathematically formulated according to provisions of LRFD-AISC (Load and Resistance factor design of American Institute of Steel Construction). Design constraints such as the strength requirements of structural members, the displacement limitations, the inter-story drift and the other structural constraints are derived from LRFD-AISC specification. In this study, a hybrid algorithm by using teachinglearning based optimization (TLBO) and harmony search (HS) algorithms is employed to solve the stated optimum design problem. These algorithms are two of the recent additions to metaheuristic techniques of numerical optimization and have been an efficient tool for solving discrete programming problems. Using these two algorithms in collaboration creates a more powerful tool and mitigates each other’s weaknesses. To demonstrate the powerful performance of presented hybrid algorithm, the optimum design of a large scale steel building is presented and the results are compared to the previously obtained results available in the literature.

Keywords: Optimum structural design, hybrid techniques, teaching-learning based optimization, harmony search algorithm, minimum weight, steel space frame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2406
130 Material and Parameter Analysis of the PolyJet Process for Mold Making Using Design of Experiments

Authors: A. Kampker, K. Kreisköther, C. Reinders

Abstract:

Since additive manufacturing technologies constantly advance, the use of this technology in mold making seems reasonable. Many manufacturers of additive manufacturing machines, however, do not offer any suggestions on how to parameterize the machine to achieve optimal results for mold making. The purpose of this research is to determine the interdependencies of different materials and parameters within the PolyJet process by using design of experiments (DoE), to additively manufacture molds, e.g. for thermoforming and injection molding applications. Therefore, the general requirements of thermoforming molds, such as heat resistance, surface quality and hardness, have been identified. Then, different materials and parameters of the PolyJet process, such as the orientation of the printed part, the layer thickness, the printing mode (matte or glossy), the distance between printed parts and the scaling of parts, have been examined. The multifactorial analysis covers the following properties of the printed samples: Tensile strength, tensile modulus, bending strength, elongation at break, surface quality, heat deflection temperature and surface hardness. The key objective of this research is that by joining the results from the DoE with the requirements of the mold making, optimal and tailored molds can be additively manufactured with the PolyJet process. These additively manufactured molds can then be used in prototyping processes, in process testing and in small to medium batch production.

Keywords: Additive manufacturing, design of experiments, mold making, PolyJet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
129 Transient Thermal Modeling of an Axial Flux Permanent Magnet (AFPM) Machine Using a Hybrid Thermal Model

Authors: J. Hey, D. A. Howey, R. Martinez-Botas, M. Lamperth

Abstract:

This paper presents the development of a hybrid thermal model for the EVO Electric AFM 140 Axial Flux Permanent Magnet (AFPM) machine as used in hybrid and electric vehicles. The adopted approach is based on a hybrid lumped parameter and finite difference method. The proposed method divides each motor component into regular elements which are connected together in a thermal resistance network representing all the physical connections in all three dimensions. The element shape and size are chosen according to the component geometry to ensure consistency. The fluid domain is lumped into one region with averaged heat transfer parameters connecting it to the solid domain. Some model parameters are obtained from Computation Fluid Dynamic (CFD) simulation and empirical data. The hybrid thermal model is described by a set of coupled linear first order differential equations which is discretised and solved iteratively to obtain the temperature profile. The computation involved is low and thus the model is suitable for transient temperature predictions. The maximum error in temperature prediction is 3.4% and the mean error is consistently lower than the mean error due to uncertainty in measurements. The details of the model development, temperature predictions and suggestions for design improvements are presented in this paper.

Keywords: Electric vehicle, hybrid thermal model, transient temperature prediction, Axial Flux Permanent Magnet machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099
128 Seismic Assessment of an Existing Dual System RC Buildings in Madinah City

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

A 15-storey RC building, studied in this paper, is representative of modern building type constructed in Madina City in Saudi Arabia before 10 years ago. These buildings are almost consisting of reinforced concrete skeleton i.e. columns, beams and flat slab as well as shear walls in the stairs and elevator areas arranged in the way to have a resistance system for lateral loads (wind – earthquake loads). In this study, the dynamic properties of the 15-storey RC building were identified using ambient motions recorded at several, spatially-distributed locations within each building. Three dimensional pushover analysis (Nonlinear static analysis) was carried out using SAP2000 software incorporating inelastic material properties for concrete, infill and steel. The effect of modeling the building with and without infill walls, on the performance point as well as capacity and demand spectra due to EQ design spectrum function in Madina area has been investigated. ATC- 40 capacity and demand spectra are utilized to get the modification factor (R) for the studied building. The purpose of this analysis is to evaluate the expected performance of structural systems by estimating, strength and deformation demands in design, and comparing these demands to available capacities at the performance levels of interest. The results are summarized and discussed.

Keywords: Seismic assessment, pushover analysis, ambient vibration, modal update.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858