The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application

Authors: Ahmad Aroziki Abdul Aziz, Sakinah Mohd Alauddin, Ruzitah Mohd Salleh, Mohammed Iqbal Shueb

Abstract:

This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/Poly (ethylene-co vinyl acetate) (EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nanocomposite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25oC) and (480 ± 25oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1oC) and captured double melting point at 84 (±2oC) and 108 (±2oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.

Keywords: Cable and Wire, LDPE/EVA, Nano MH, Nano Particles, Thermal properties.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1337599

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2992

References:


[1] H. Huang; M. Tian.; L. Liu.; W. Liang.; L. Zhang, Effect of Particle Size on Flame Retardancy of Mg(OH)2-Filled Ethylene Vinyl Acetate Copolymer Composites, Journal of Applied Polymer Science, Vol. 100, 4461– 4469 (2006)
[2] H. L. Ferna´ndez, A. Velasco, J. Chimenos, L. Cuesta, J. Espiell, F. (2007). Thermal stability and flame retardancy of LDPE/EVA blends filled with synthetic hydromagnesite /aluminium hydroxide/ montmorillonite and magnesium hydroxide/aluminium hydroxide / montmorillonite mixtures, Polymer Degradation and Stability. 92: 1082- 1087.
[3] L. Qiu, R. Xie, P. Ding, B. Qu, “Preparation and characterization of Mg(OH)2 nanoparticles and flame-retardant property of its nanocomposites with EVA”, Anhui, PR China, 2003 pp 391–395
[4] Li, Y.; Qiao, H. Chin Beijing University Chem Tech 2003, 29(3), 48.
[5] Shigeo, M.; Takeshi, I.; Hithoshi, A. J Appl Polym Sci 1980, 25,415.
[6] M.A. Ca´rdenas, D. Garcı´a-Lo´ pez, I. Gobernado-Mitre, J.C. Merino, J.M. Pastor, J. de D. Martı´nez, J. Barbeta, D. Calveras, “Mechanical and fire retardant properties of EVA/clay/ATH nanocomposites – Effect of particle size and surface treatment of ATH filler”, Valladolid, Spain, 2008 pp 2032–2037
[7] X. Zhang, F. Guo, J. Chen, G. Wang, H. Liu, “Investigation of interfacial modification for flame retardant ethylene vinyl acetate copolymer/alumina trihydrate nanocomposites”, Beijing People’s Republic of China, 2005 pp 411- 418
[8] Haurie, L. Ferna´ndez, A. Velasco, J. Chimenos, J. Lopez Cuesta, J. Espiell, F. (2006). Synthetic hydromagnesite as flame retardant. Evaluation of the flame behaviour in a polyethylene matrix, Polymer Degradation and Stability. 91: 989-994.
[9] Marchal, A, Deobel R, Le Bras M, Leroy J-M and price D (1994). Effect of intumescence on polymer degradation. Polymer Degdation and Stability 44:.263- 272.
[10] Mouzheng, F. Baojun. (2004). Synergistic flame retardant mechanism of fumed silica in ethylene-vinyl acetate / magnesium hydroxide blends. Polymer Degradation and Stability.85: 633-639.
[11] Delfosse, L., Baillet . (1989). Combustion of ethylene-Vinyl Acetate
[12] Copolymer Filled with Aluminium and Magnesium Hydroxides. Polymer Degradation and Stability. 23: 337-347.
[13] Maurin, M.B., Pang and Hussain (1992). Thermogravimetric analysis of ethylene-vinyl acetate copolymer with dynamic heating rates. Thermochim Acta 209: 203-207.
[14] Maurin, M.B., Dittert L.W and Hussain (1991). Thermogravimetric analysis of ethylene-vinyl acetate copolymers with Fourier transform infrared analysis of the pyrolysis products. Thermochim Acta 186: 97- 102.
[15] Tai, C. M.; Li, R. K. Y. J Appl Polym Sci 2001, 80, 2718.
[16] Carpentier, F. Bourbigot, S. Le Bras, M. Delobel, R. Foulon, M. Polym Degrad Stab 2000, 69, 83.
[17] Cross, M. S. Cusack, P. A. Hornsby, P. R. Polym Degrad Stab 2003, 79, 309.
[18] Yeh, J. Yang, H. Huang, S. Polymer Degrad Stab 1995, 50, 229.
[19] Genovese, A. Shanks, R.A. (2007). Structural and thermal interpretation of the synergy and interactions between the fire retardants magnesium hydroxide and zinc borate, Polymer Degradation and Stability. 92: 2-13.
[20] Rothon, R.N. Hornsby, P.R. (1996). Flame retardant effect of magnesium hydroxide, Polymer.Degradation and.Stablity., 54 (2- 3):.383-385.
[21] J. A. Dean: ‘The Analytical Chemistry Handbook’, 15.1–15.5; 1995, New York. McGraw Hill.
[22] E. Pungor: ‘A Practical Guide to Instrumental Analysis’, 181–191; 1995, CRC Press, Boca Raton, Florida.
[23] D. A. Skoog, F. J. Holler and T.A. Nieman: ‘Principles of Instrumental Analysis’, 5th edn, 905–908; 1998, Saunders, Philadelphia, PA, USA.
[24] M. J. Starink: Intl Mater. Rev., 2004, 49, 191-226.