WASET
	@article{(Open Science Index):https://publications.waset.org/pdf/8214,
	  title     = {Transient Thermal Modeling of an Axial Flux Permanent Magnet (AFPM) Machine Using a Hybrid Thermal Model},
	  author    = {J. Hey and  D. A. Howey and  R. Martinez-Botas and  M. Lamperth},
	  country	= {},
	  institution	= {},
	  abstract     = {This paper presents the development of a hybrid
thermal model for the EVO Electric AFM 140 Axial Flux Permanent
Magnet (AFPM) machine as used in hybrid and electric vehicles. The
adopted approach is based on a hybrid lumped parameter and finite
difference method. The proposed method divides each motor
component into regular elements which are connected together in a
thermal resistance network representing all the physical connections
in all three dimensions. The element shape and size are chosen
according to the component geometry to ensure consistency. The
fluid domain is lumped into one region with averaged heat transfer
parameters connecting it to the solid domain. Some model parameters
are obtained from Computation Fluid Dynamic (CFD) simulation and
empirical data. The hybrid thermal model is described by a set of
coupled linear first order differential equations which is discretised
and solved iteratively to obtain the temperature profile. The
computation involved is low and thus the model is suitable for
transient temperature predictions. The maximum error in temperature
prediction is 3.4% and the mean error is consistently lower than the
mean error due to uncertainty in measurements. The details of the
model development, temperature predictions and suggestions for
design improvements are presented in this paper.},
	    journal   = {International Journal of Mechanical and Mechatronics Engineering},
	  volume    = {4},
	  number    = {11},
	  year      = {2010},
	  pages     = {1274 - 1283},
	  ee        = {https://publications.waset.org/pdf/8214},
	  url   	= {https://publications.waset.org/vol/47},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 47, 2010},
	}