Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8

Search results for: M. N. Fayed

8 Synchronization of Traveling Waves within a Hollow-Core Vortex

Authors: H. Ait Abderrahmane, M. Fayed, H. D. Ng, G. H. Vatistas

Abstract:

The present paper expands details and confirms the transition mechanism between two subsequent polygonal patterns of the hollow-core vortex. Using power spectral analysis, we confirm in this work that the transition from any N-gon to (N+1)-gon pattern observed within a hollow-core vortex of shallow rotating flows occurs in two steps. The regime was quasi-periodic before the frequencies lock (synchronization). The ratios of locking frequencies were found to be equal to (N-1)/N.

Keywords: Patterns, quasi-periodic, swirling, synchronization, transition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655
7 Seismic Assessment of Old Existing RC Buildings on Madinah with Masonry Infilled Using Ambient Vibration Measurements

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

Early pre-code reinforced concrete structures present undetermined resistance to earthquakes. This situation is particularly unacceptable in the case of essential structures, such as healthcare structures and pilgrims' houses. Amongst these, an existing old RC building in Madinah city (KSA) is seismically evaluated with and without infill wall and their dynamic characteristics are compared with measured values in the field using ambient vibration measurements (AVM). After updating the mathematical models for this building with the experimental results, three dimensional pushover analysis (Nonlinear static analysis) was carried out using commercial structural analysis software incorporating inelastic material properties for concrete, infill and steel. The purpose of this analysis is to evaluate the expected performance of structural systems by estimating, strength and deformation demands in design, and comparing these demands to available capacities at the performance levels of interest. The results summarized and discussed.

Keywords: Seismic Assessment, Pushover Analysis, Ambient vibration, Modal update.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
6 Seismic Assessment of Old Existing RC Buildings with Masonry Infill in Madinah as per ASCE

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

An existing RC building in Madinah is seismically evaluated with and without infill wall. Four model systems have been considered i.e. model I (no infill), model IIA (strut infill-update from field test), model IIB (strut infill- ASCE/SEI 41) and model IIC (strut infill-Soft storey- ASCE/SEI 41). Three dimensional pushover analyses have been carried out using SAP2000 software incorporating inelastic material behavior for concrete, steel and infill walls. Infill wall has been modeled as equivalent strut according to suggested equation matching field test measurements and to the ASCE/SEI 41 equation. The effect of building modeling on the performance point as well as capacity and demand spectra due to EQ design spectrum function in Madinah area has been investigated. The response modification factor (R) for the 5 story RC building is evaluated from capacity and demand spectra (ATC-40) for the studied models. The results are summarized and discussed.

Keywords: Infill wall, Pushover Analysis, Response Modification Factor, Seismic Assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2936
5 Ambient Vibration Testing of Existing Buildings in Madinah

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

The elastic period has a primary role in the seismic assessment of buildings. Reliable calculations and/or estimates of the fundamental frequency of a building and its site are essential during analysis and design process. Various code formulas based on empirical data are generally used to estimate the fundamental frequency of a structure. For existing structures, in addition to code formulas and available analytical tools such as modal analyses, various methods of testing including ambient and forced vibration testing procedures may be used to determine dynamic characteristics. In this study, the dynamic properties of the 32 buildings located in the Madinah of Saudi Arabia were identified using ambient motions recorded at several, spatially-distributed locations within each building. Ambient vibration measurements of buildings have been analyzed and the fundamental longitudinal and transverse periods for all tested buildings are presented. The fundamental mode of vibration has been compared in plots with codes formulae (Saudi Building Code, EC8, and UBC1997). The results indicate that measured periods of existing buildings are shorter than that given by most empirical code formulas. Recommendations are given based on the common design and construction practice in Madinah city.

Keywords: Ambient vibration, Fundamental period, RC buildings, Infill walls.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
4 Seismic Assessment of an Existing Dual System RC Buildings in Madinah City

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

A 15-storey RC building, studied in this paper, is representative of modern building type constructed in Madina City in Saudi Arabia before 10 years ago. These buildings are almost consisting of reinforced concrete skeleton i.e. columns, beams and flat slab as well as shear walls in the stairs and elevator areas arranged in the way to have a resistance system for lateral loads (wind – earthquake loads). In this study, the dynamic properties of the 15-storey RC building were identified using ambient motions recorded at several, spatially-distributed locations within each building. Three dimensional pushover analysis (Nonlinear static analysis) was carried out using SAP2000 software incorporating inelastic material properties for concrete, infill and steel. The effect of modeling the building with and without infill walls, on the performance point as well as capacity and demand spectra due to EQ design spectrum function in Madina area has been investigated. ATC- 40 capacity and demand spectra are utilized to get the modification factor (R) for the studied building. The purpose of this analysis is to evaluate the expected performance of structural systems by estimating, strength and deformation demands in design, and comparing these demands to available capacities at the performance levels of interest. The results are summarized and discussed.

Keywords: Seismic assessment, pushover analysis, ambient vibration, modal update.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
3 Pushover Analysis of Reinforced Concrete Buildings Using Full Jacket Technics: A Case Study on an Existing Old Building in Madinah

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

The retrofitting of existing buildings to resist the seismic loads is very important to avoid losing lives or financial disasters. The aim at retrofitting processes is increasing total structure strength by increasing stiffness or ductility ratio. In addition, the response modification factors (R) have to satisfy the code requirements for suggested retrofitting types. In this study, two types of jackets are used, i.e. full reinforced concrete jackets and surrounding steel plate jackets. The study is carried out on an existing building in Madinah by performing static pushover analysis before and after retrofitting the columns. The selected model building represents nearly all-typical structure lacks structure built before 30 years ago in Madina City, KSA. The comparison of the results indicates a good enhancement of the structure respect to the applied seismic forces. Also, the response modification factor of the RC building is evaluated for the studied cases before and after retrofitting. The design of all vertical elements (columns) is given. The results show that the design of retrofitted columns satisfied the code's design stress requirements. However, for some retrofitting types, the ductility requirements represented by response modification factor do not satisfy KSA design code (SBC- 301).

Keywords: Concrete jackets, steel jackets, RC buildings pushover analysis, non-linear analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
2 Modeling of Masonry In-Filled R/C Frame to Evaluate Seismic Performance of Existing Building

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

This paper deals with different modeling aspects of masonry infill: no infill model, Layered shell infill model, and strut infill model. These models consider the complicated behavior of the in-filled plane frames under lateral load similar to an earthquake load. Three strut infill models are used: NBCC (2005) strut infill model, ASCE/SEI 41-06 strut infill model and proposed strut infill model based on modification to Canadian, NBCC (2005) strut infill model. Pushover and modal analyses of a masonry infill concrete frame with a single storey and an existing 5-storey RC building have been carried out by using different models for masonry infill. The corresponding hinge status, the value of base shear at target displacement as well as their dynamic characteristics have been determined and compared. A validation of the structural numerical models for the existing 5-storey RC building has been achieved by comparing the experimentally measured and the analytically estimated natural frequencies and their mode shapes. This study shows that ASCE/SEI 41-06 equation underestimates the values for the equivalent properties of the diagonal strut while Canadian, NBCC (2005) equation gives realistic values for the equivalent properties. The results indicate that both ASCE/SEI 41-06 and Canadian, NBCC (2005) equations for strut infill model give over estimated values for dynamic characteristic of the building. Proposed modification to Canadian, NBCC (2005) equation shows that the fundamental dynamic characteristic values of the building are nearly similar to the corresponding values using layered shell elements as well as measured field results.

Keywords: Masonry infill, framed structures, RC buildings, non-structural elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2885
1 Miniaturized PVC Sensors for Determination of Fe2+, Mn2+ and Zn2+ in Buffalo-Cows’ Cervical Mucus Samples

Authors: Ahmed S. Fayed, Umima M. Mansour

Abstract:

Three polyvinyl chloride membrane sensors were developed for the electrochemical evaluation of ferrous, manganese and zinc ions. The sensors were used for assaying metal ions in cervical mucus (CM) of Egyptian river buffalo-cows (Bubalus bubalis) as their levels vary dependent on cyclical hormone variation during different phases of estrus cycle. The presented sensors are based on using ionophores, β-cyclodextrin (β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD) and sulfocalix-4-arene (SCAL) for sensors 1, 2 and 3 for Fe2+, Mn2+ and Zn2+, respectively. Dioctyl phthalate (DOP) was used as the plasticizer in a polymeric matrix of polyvinylchloride (PVC). For increasing the selectivity and sensitivity of the sensors, each sensor was enriched with a suitable complexing agent, which enhanced the sensor’s response. For sensor 1, β-CD was mixed with bathophenanthroline; for sensor 2, porphyrin was incorporated with HP-β-CD; while for sensor 3, oxine was the used complexing agent with SCAL. Linear responses of 10-7-10-2 M with cationic slopes of 53.46, 45.01 and 50.96 over pH range 4-8 were obtained using coated graphite sensors for ferrous, manganese and zinc ionic solutions, respectively. The three sensors were validated, according to the IUPAC guidelines. The obtained results by the presented potentiometric procedures were statistically analyzed and compared with those obtained by atomic absorption spectrophotometric method (AAS). No significant differences for either accuracy or precision were observed between the two techniques. Successful application for the determination of the three studied cations in CM, for the purpose to determine the proper time for artificial insemination (AI) was achieved. The results were compared with those obtained upon analyzing the samples by AAS. Proper detection of estrus and correct time of AI was necessary to maximize the production of buffaloes. In this experiment, 30 multi-parous buffalo-cows were in second to third lactation and weighting 415-530 kg, and were synchronized with OVSynch protocol. Samples were taken in three times around ovulation, on day 8 of OVSynch protocol, on day 9 (20 h before AI) and on day 10 (1 h before AI). Beside analysis of trace elements (Fe2+, Mn2+ and Zn2+) in CM using the three sensors, the samples were analyzed for the three cations and also Cu2+ by AAS in the CM samples and blood samples. The results obtained were correlated with hormonal analysis of serum samples and ultrasonography for the purpose of determining of the optimum time of AI. The results showed significant differences and powerful correlation with Zn2+ composition of CM during heat phase and the ovulation time, indicating that the parameter could be used as a tool to decide optimal time of AI in buffalo-cows.

Keywords: PVC sensors, buffalo-cows, cyclodextrins, atomic absorption spectrophotometry, artificial insemination, OVSynch protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903