Search results for: electrode configuration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 616

Search results for: electrode configuration

616 Effect of Rotating Electrode

Authors: S. Gnapowski, H. Akiyama, S. Hamid R. Hosseini, C. Yamabe

Abstract:

A gold coated copper rotating electrode was used to eliminate surface oxidation effect. This study examined the effect of electrode rotation on the ozone generation process and showed that an ozonizer with an electrode rotating system might be a possible way to increase ozone-synthesis efficiency. Two new phenomena appeared during experiments with the rotating electrode. First was that ozone concentration increased to about two times higher than that of the case with no rotation. Second, input power and discharge area were found to increase with the rotation speed. Both ozone concentration and ozone production efficiency improved in the case of rotating electrode compared to the case with a non-rotating electrode. One possible reason for this was the increase in discharge length of micro-discharges during electrode rotation. The rotating electrode decreased onset voltage, while reactor capacitance increased with rotation. Use of a rotating-type electrode allowed earlier observation of the ozone zero phenomena compared with a non-rotating electrode because, during rotation, the entire electrode surface was functional, allowing nitrogen on the electrode surface to be evenly consumed. Nitrogen demand increased with increasing rotation s

Keywords: Rotating electrode, input power, onset voltage, discharge canal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
615 Study of the Cryogenically Cooled Electrode Shape in Electric Discharge Machining Process

Authors: Vineet Srivastava, Pulak M. Pandey

Abstract:

Electrical discharge machining (EDM) is well established machining technique mainly used to machine complex geometries on difficult-to-machine materials and high strength temperature resistant alloys. In the present research, the objective is to study the shape of the electrode and establish the application of liquid nitrogen in reducing distortion of the electrode during electrical discharge machining of M2 grade high speed steel using copper electrodes. Study of roundness was performed on the electrode to observe the shape of the electrode for both conventional EDM and EDM with cryogenically cooled electrode. Scanning Electron Microscope (SEM) has been used to study the shape of electrode tip. The effect of various parameters such as discharge current and pulse on time has been studied to understand the behavior of distortion of electrode. It has been concluded that the shape retention is better in case of liquid nitrogen cooled electrode.

Keywords: cryogenic cooling, EDM, electrode shape, out of roundness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2320
614 Study of Parameters Affecting the Electrostatic Attractions Force

Authors: Vahid Sabermand, Yousef Hojjat, Majid Hasanzadeh

Abstract:

This paper contains 2 main parts. In the first part of paper we simulated and studied three types of electrode patterns used in various industries for suspension and handling of the semiconductor and glass and we selected the best pattern by evaluating the electrostatic force, which was comb pattern electrode. In the second part we investigated the parameters affecting the amount of electrostatic force such as the gap between surface and electrode (g), the electrode width (w), the gap between electrodes (t), the surface permittivity and electrode length and methods of improvement of adhesion force by changing these values.

Keywords: Electrostatic force, electrostatic adhesion, electrostatic chuck, electrostatic application in industry, Electroadhesive grippers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2739
613 Performance Enhancement of DWDM Systems Using HTE Configuration HTE Configuration for 1479-1555nm Wavelength Range

Authors: Inderpreet Kaur, Neena Gupta

Abstract:

In this paper, the gain spectrum of EDFA has been broadened by implementing HTE configuration for S and C band. On using this configuration an amplification bandwidth of 76nm ranging from 1479nm to 1555nm with a peak gain of 26dB has been obtained.

Keywords: C band, DWDM system, EDFA, Gain, HTE, Hybrid Fiber Amplifier, S band.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
612 A Polyimide Based Split-Ring Neural Interface Electrode for Neural Signal Recording

Authors: Ning Xue, Srinivas Merugu, Ignacio Delgado Martinez, Tao Sun, John Tsang, Shih-Cheng Yen

Abstract:

We have developed a polyimide based neural interface electrode to record nerve signals from the sciatic nerve of a rat. The neural interface electrode has a split-ring shape, with four protruding gold electrodes for recording, and two reference gold electrodes around the split-ring. The split-ring electrode can be opened up to encircle the sciatic nerve. The four electrodes can be bent to sit on top of the nerve and hold the device in position, while the split-ring frame remains flat. In comparison, while traditional cuff electrodes can only fit certain sizes of the nerve, the developed device can fit a variety of rat sciatic nerve dimensions from 0.6 mm to 1.0 mm, and adapt to the chronic changes in the nerve as the electrode tips are bendable. The electrochemical impedance spectroscopy measurement was conducted. The gold electrode impedance is on the order of 10 kΩ, showing excellent charge injection capacity to record neural signals.

Keywords: Impedance, neural interface, split-ring electrode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2549
611 Design of a Carbon Silicon Electrode for Iontophoresis Treatment towards Alopecia

Authors: Q. Wei, D. G. Hwang, Z. Mohy-Udin, D. H. Shin, J. H. Park, M. Y. Kang, J. H. Cho

Abstract:

This study presents design of a carbon silicon electrode for iontophorsis treatment towards alopecia. The alopecia is a medical description means loss of hair from the body. For solving this problem, the drug need to be delivered into the scalp, therefore, the iontophoresis was chosen to use in this treatment. However, almost common electrodes of iontophoresis device are made with metal material, the electrodes could give patients hurt when they using it, and it is hard to avoid the hair for attaching the hair. For this reason, an electrode is made with silicon material to decrease the hurt from the electrodes, and the carbon material is mixed in it for increasing conductance. The several cones with stainless material on the electrode make the electrode is able to void hair to attach the affected part. According to the results of a vivo-experiment, the carbon silicon electrode showed a good performance and in treatment comfortably.

Keywords: Carbon silicon, drug delivery system, iontophoresis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
610 Titania and Cu-Titania Composite Layer on Graphite Substrate as Negative Electrode for Li-Ion Battery

Authors: Fitria Rahmawati, Nuryani, Liviana Wijayanti

Abstract:

This research study the application of the immobilized TiO2 layer and Cu-TiO2 layer on graphite substrate as a negative electrode or anode for Li-ion battery. The titania layer was produced through chemical bath deposition method, meanwhile Cu particles were deposited electrochemically. A material can be used as an electrode as it has capability to intercalates Li ions into its crystal structure. The Li intercalation into TiO2/Graphite and Cu- TiO2/Graphite were analyzed from the changes of its XRD pattern after it was used as electrode during discharging process. The XRD patterns were refined by Le Bail method in order to determine the crystal structure of the prepared materials. A specific capacity and the cycle ability measurement were carried out to study the performance of the prepared materials as negative electrode of the Li-ion battery. The specific capacity was measured during discharging process from fully charged until the cut off voltage. A 300 was used as a load. The result shows that the specific capacity of Li-ion battery with TiO2/Graphite as negative electrode is 230.87 ± 1.70mAh.g-1 which is higher than the specific capacity of Li-ion battery with pure graphite as negative electrode, i.e 140.75 ±0.46mAh.g-1. Meanwhile deposition of Cu onto TiO2 layer does not increase the specific capacity, and the value even lower than the battery with TiO2/Graphite as electrode. The cycle ability of the prepared battery is only two cycles, due to the Li ribbon which was used as cathode became fragile and easily broken.

Keywords: Cu-TiO2, electrode, graphite substrate, Li-ion battery, TiO2 layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
609 Mathematical Modeling of Switching Processes in Magnetically Controlled MEMS Switches

Authors: Sergey M. Karabanov, Dmitry V. Suvorov, Dmitry Yu. Tarabrin

Abstract:

The operating principle of magnetically controlled microelectromechanical system (MEMS) switches is based on controlling the beam movement under the influence of a magnetic field. Currently, there is a MEMS switch design with a flexible ferromagnetic electrode in the form of a fixed-terminal beam, with an electrode fastened on a straight or cranked anchor. The basic performance characteristics of magnetically controlled MEMS switches (service life, sensitivity, contact resistance, fast response) are largely determined by the flexible electrode design. To ensure the stable and controlled motion of the flexible electrode, it is necessary to provide the optimal design of a flexible electrode.

Keywords: MEMS switch, magnetic sensitivity, magnetic concentrator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 680
608 Studies on the Feasibility of Cow’s Urine as Non-Conventional Energy Sources

Authors: Raj Kumar Rajak, Bharat Mishra

Abstract:

Bio-batteries represent an entirely new long-term, reasonable, reachable, and eco-friendly approach to generation of sustainable energy. In the present experimental work, we have studied the effect of the generation of power by bio-battery using different electrode pairs. The tests show that it is possible to generate electricity using cow’s urine as an electrolyte. C-Mg electrode pair shows maximum Voltage and Short Circuit Current (SCC), while C-Zn electrode pair shows less Open Circuit Voltage (OCV) and SCC. By the studies of cow urine and different electrodes, it is found that C-Zn electrode battery is more economical. The cow urine battery with C-Zn electrode provides maximum power (707.4 mW) and durability (up to 145 h). This result shows that the bio-batteries have the potency to full fill the need of electricity demand for lower energy equipment.

Keywords: Bio-batteries, cow’s urine, electrodes, non-conventional.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 863
607 Switching Behaviors of HfO2/NiSix Based RRAM

Authors: Z. X. Chen, Z. Fang, X. P. Wang, G. -Q. Lo, D. -L. Kwong, Y. H. Wu

Abstract:

This paper presents a study of Ni-silicides as the bottom electrode of HfO2-based RRAM. Various silicidation conditions were used to obtain different Ni concentrations within the Ni-silicide bottom electrode, namely Ni2Si, NiSi, and NiSi2. A 10nm HfO2 switching material and 50nm TiN top electrode was then deposited and etched into 500nm by 500nm square RRAM cells. Cell performance of the Ni2Si and NiSi cells were good, while the NiSi2 cell could not switch reliably, indicating that the presence of Ni in the bottom electrode is important for good switching.

Keywords: HfO2-based, Ni-silicide, NiSi, resistive RAM (RRAM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
606 Human Body Configuration using Bayesian Model

Authors: Rui. Zhang, Yiming. Pi

Abstract:

In this paper we present a novel approach for human Body configuration based on the Silhouette. We propose to address this problem under the Bayesian framework. We use an effective Model based MCMC (Markov Chain Monte Carlo) method to solve the configuration problem, in which the best configuration could be defined as MAP (maximize a posteriori probability) in Bayesian model. This model based MCMC utilizes the human body model to drive the MCMC sampling from the solution space. It converses the original high dimension space into a restricted sub-space constructed by the human model and uses a hybrid sampling algorithm. We choose an explicit human model and carefully select the likelihood functions to represent the best configuration solution. The experiments show that this method could get an accurate configuration and timesaving for different human from multi-views.

Keywords: Bayesian framework, MCMC, model based, human body configuration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1268
605 Performance Evaluation of Powder Metallurgy Electrode in Electrical Discharge Machining of AISI D2 Steel Using Taguchi Method

Authors: Naveen Beri, S. Maheshwari, C. Sharma, Anil Kumar

Abstract:

In this paper an attempt has been made to correlate the usefulness of electrodes made through powder metallurgy (PM) in comparison with conventional copper electrode during electric discharge machining. Experimental results are presented on electric discharge machining of AISI D2 steel in kerosene with copper tungsten (30% Cu and 70% W) tool electrode made through powder metallurgy (PM) technique and Cu electrode. An L18 (21 37) orthogonal array of Taguchi methodology was used to identify the effect of process input factors (viz. current, duty cycle and flushing pressure) on the output factors {viz. material removal rate (MRR) and surface roughness (SR)}. It was found that CuW electrode (made through PM) gives high surface finish where as the Cu electrode is better for higher material removal rate.

Keywords: Electrical discharge machining (EDM), Powder Metallurgy (PM), Taguchi method, Material Removal Rate (MRR), Surface Roughness (SR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4245
604 Comparison of Transparent Nickel Doped Cobalt Sulfide and Platinum Counter Electrodes Used in Quasi-Solid State Dye Sensitized Solar Cells

Authors: Dimitra Sygkridou, Dimitrios Karageorgopoulos, Elias Stathatos, Evangelos Vitoratos

Abstract:

Transparent nickel doped cobalt sulfide was fabricated on a SnO2:F electrode and tested as an efficient electrocatalyst and as an alternative to the expensive platinum counter electrode. In order to investigate how this electrode could affect the electrical characteristics of a dye-sensitized solar cell, we manufactured cells with the same TiO2 photoanode sensitized with dye (N719) and employing the same quasi-solid electrolyte, altering only the counter electrode used. The cells were electrically and electrochemically characterized and it was observed that the ones with the Ni doped CoS2 outperformed the efficiency of the cells with the Pt counter electrode (3.76% and 3.44% respectively). Particularly, the higher efficiency of the cells with the Ni doped CoS2 counter electrode (CE) is mainly because of the enhanced photocurrent density which is attributed to the enhanced electrocatalytic ability of the CE and the low charge transfer resistance at the CE/electrolyte interface.

Keywords: Counter electrodes, dye-sensitized solar cells, quasisolid state electrolyte, transparency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2213
603 Development of a Spark Electrode Ignition System for an Explosion Vessel

Authors: Shaharin A. Sulaiman, Mizuan Minhat

Abstract:

This paper presents development of an ignition system using spark electrodes for application in a research explosion vessel. A single spark is aimed to be discharged with quantifiable ignition energy. The spark electrode system would enable study of flame propagation, ignitability of fuel-air mixtures and other fundamental characteristics of flames. The principle of the capacitive spark circuit of ASTM is studied to charge an appropriate capacitance connected across the spark gap through a large resistor by a high voltage from the source of power supply until the initiation of spark. Different spark energies could be obtained mainly by varying the value of the capacitance and the supply current. The spark sizes produced are found to be affected by the spark gap, electrode size, input voltage and capacitance value.

Keywords: Ignition, Spark Electrode, Flame

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
602 A Virtual Electrode through Summation of Time Offset Pulses

Authors: Isaac Cassar, Trevor Davis, Yi-Kai Lo, Wentai Liu

Abstract:

Retinal prostheses have been successful in eliciting visual responses in implanted subjects. As these prostheses progress, one of their major limitations is the need for increased resolution. As an alternative to increasing the number of electrodes, virtual electrodes may be used to increase the effective resolution of current electrode arrays. This paper presents a virtual electrode technique based upon time-offsets between stimuli. Two adjacent electrodes are stimulated with identical pulses with too short of pulse widths to activate a neuron, but one has a time offset of one pulse width. A virtual electrode of twice the pulse width was then shown to appear in the center, with a total width capable of activating a neuron. This can be used in retinal implants by stimulating electrodes with pulse widths short enough to not elicit responses in neurons, but with their combined pulse width adequate to activate a neuron in between them.

Keywords: Electrical stimulation, Neuroprosthesis, Retinal implant, Retinal Prosthesis, Virtual electrode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
601 Studies on the Feasibility of Cow Dung as a Non-Conventional Energy Source

Authors: Raj Kumar Rajak, Bharat Mishra

Abstract:

Bio-batteries represent an entirely new long-term, reasonable, reachable and ecofriendly approach to produce sustainable energy. In the present experimental work, we have studied the effect of generation of power by bio-battery using different electrode pairs. The tests show that it is possible to generate electricity using cow dung as an electrolyte. C-Mg electrode pair shows maximum voltage and SCC (Short Circuit Current) while C-Zn electrode pair shows less OCV (Open Circuit Voltage) and SCC. We have chosen C-Zn electrodes because Mg electrodes are not economical. By the studies of different electrodes and cow dung, it is found that C-Zn electrode battery is more suitable. This result shows that the bio-batteries have the potency to full fill the need of electricity demand for lower energy equipment.

Keywords: Bio-batteries, electricity, cow dung, electrodes, non-conventional.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876
600 Semi-Transparent Dye-Sensitized Solar Panels for Energy Autonomous Greenhouses

Authors: A. Mourtzikou, D. Sygkridou, T. Georgakopoulos, G. Katsagounos, E. Stathatos

Abstract:

Over 60% highly transparent quasi-solid-state dye-sensitized solar cells (DSSCs) with dimension of 50x50 cm2 were fabricated via inkjet printing process using nanocomposite inks as raw materials and tested under outdoor illumination conditions. The cells were electrically characterized, and their possible application to the shell of greenhouses was also examined. The panel design was in Z-interconnection, where the working electrode was inkjet printed on one conductive glass and the counter electrode on a second glass in a sandwich configuration. Silver current collective fingers were printed on the glasses to make the internal electrical connections. In that case, the adjacent cells were connected in series via silver fingers and finally insulated using a UV curing resin to protect them from the corrosive (I-/I3-) redox couple of the electrolyte.

Keywords: Dye-sensitized solar panels, inkjet printing, quasi-solid-state electrolyte, semi-transparency, scale up.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 714
599 Identification of Configuration Space Singularities with Local Real Algebraic Geometry

Authors: Marc Diesse, Hochschule Heilbronn

Abstract:

We address the question of identifying the configuration space singularities of linkages, i.e., points where the configuration space is not locally a submanifold of Euclidean space. Because the configuration space cannot be smoothly parameterized at such points, these singularity types have a significantly negative impact on the kinematics of the linkage. It is known that Jacobian methods do not provide sufficient conditions for the existence of CS-singularities. Herein, we present several additional algebraic criteria that provide the sufficient conditions. Further, we use those criteria to analyze certain classes of planar linkages. These examples will also show how the presented criteria can be checked using algorithmic methods.

Keywords: Linkages, configuration space singularities, real algebraic geometry, analytic geometry, computer algebra.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 436
598 The Concentration Effects for the Adsorption Behavior of Heptyl Viologen Cation Radicals on Indium-Tin-Oxide Electrode Surfaces

Authors: Yusuke Ayato, Takashi Itahashi, Akiko Takatsu, Kenji Kato, Naoki Matsuda

Abstract:

In situ observation of absorption spectral change of heptil viologen cation radical (HV+.) was performed by slab optical waveguide (SOWG) spectroscopy utilizing indium-tin-oxide (ITO) electrodes. Synchronizing with electrochemical techniques, we observed the adsorption process of HV+.on the ITO electrode. In this study, we carried out the ITO-SOWG observations using KBr aqueous solution containing different concentration of HV to investigate the concentration dependent spectral change. A few specific absorption bands, which indicated HV+.existed as both monomer and dimer on ITO electrode surface with a monolayer or a few layers deposition, were observed in UV-visible region. The change in the peak position of the absorption spectra from adsorption species of HV+. were correlated with the concentration of HV as well as the electrode potential.

Keywords: absorption phenomena, heptil viologen, indium-tin-oxide (ITO) electrode, in situ, slab optical waveguide(SOWG) spectroscopy,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
597 Application of Four-electrode Method to Analysis Resistance Characteristics of Conductive Concrete

Authors: Chun-Yao Lee, Siang-Ren Wang

Abstract:

The purpose of this paper is to discuss the influence of resistance characteristic on the high conductive concrete considering the various voltage and environment. The four-electrode method is applied to the tailor-made high conductive concrete with appropriate proportion. The curve of resistivity with the changes of voltage and environment is plotted and the changes of resistivity are explored. The result based on the methods reveals that resistivity is less affected by the temperature factor, and the four-electrode method would be an applicable measurement method on a site inspection.

Keywords: Conductive concrete, Resistivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
596 Carbon-Based Electrochemical Detection of Pharmaceuticals from Water

Authors: M. Ardelean, F. Manea, A. Pop, J. Schoonman

Abstract:

The presence of pharmaceuticals in the environment and especially in water has gained increasing attention. They are included in emerging class of pollutants, and for most of them, legal limits have not been set-up due to their impact on human health and ecosystem was not determined and/or there is not the advanced analytical method for their quantification. In this context, the development of various advanced analytical methods for the quantification of pharmaceuticals in water is required. The electrochemical methods are known to exhibit the great potential for high-performance analytical methods but their performance is in direct relation to the electrode material and the operating techniques. In this study, two types of carbon-based electrodes materials, i.e., boron-doped diamond (BDD) and carbon nanofiber (CNF)-epoxy composite electrodes have been investigated through voltammetric techniques for the detection of naproxen in water. The comparative electrochemical behavior of naproxen (NPX) on both BDD and CNF electrodes was studied by cyclic voltammetry, and the well-defined peak corresponding to NPX oxidation was found for each electrode. NPX oxidation occurred on BDD electrode at the potential value of about +1.4 V/SCE (saturated calomel electrode) and at about +1.2 V/SCE for CNF electrode. The sensitivities for NPX detection were similar for both carbon-based electrode and thus, CNF electrode exhibited superiority in relation to the detection potential. Differential-pulsed voltammetry (DPV) and square-wave voltammetry (SWV) techniques were exploited to improve the electroanalytical performance for the NPX detection, and the best results related to the sensitivity of 9.959 µA·µM-1 were achieved using DPV. In addition, the simultaneous detection of NPX and fluoxetine -a very common antidepressive drug, also present in water, was studied using CNF electrode and very good results were obtained. The detection potential values that allowed a good separation of the detection signals together with the good sensitivities were appropriate for the simultaneous detection of both tested pharmaceuticals. These results reclaim CNF electrode as a valuable tool for the individual/simultaneous detection of pharmaceuticals in water.

Keywords: Boron-doped diamond electrode, carbon nanofiber-epoxy composite electrode, emerging pollutants, pharmaceuticals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
595 Bio-Heat Transfer in Various Transcutaneous Stimulation Models

Authors: Trevor E. Davis, Isaac Cassar, Yi-Kai Lo, Wentai Liu

Abstract:

This study models the use of transcutaneous electrical nerve stimulation on skin with a disk electrode in order to simulate tissue damage. The current density distribution above a disk electrode is known to be a dynamic and non-uniform quantity that is intensified at the edges of the disk. The non-uniformity is subject to change through using various electrode geometries or stimulation methods. One of these methods known as edge-retarded stimulation has shown to reduce this edge enhancement. Though progress has been made in modeling the behavior of a disk electrode, little has been done to test the validity of these models in simulating the actual heat transfer from the electrode. This simulation uses finite element software to couple the injection of current from a disk electrode to heat transfer described by the Pennesbioheat transfer equation. An example application of this model is studying an experimental form of stimulation, known as edge-retarded stimulation. The edge-retarded stimulation method will reduce the current density at the edges of the electrode. It is hypothesized that reducing the current density edge enhancement effect will, in turn, reduce temperature change and tissue damage at the edges of these electrodes. This study tests this hypothesis as a demonstration of the capabilities of this model. The edge-retarded stimulation proved to be safer after this simulation. It is shown that temperature change and the fraction of tissue necrosis is much greater in the square wave stimulation. These results bring implications for changes of procedures in transcutaneous electrical nerve stimulation and transcutaneous spinal cord stimulation as well.

Keywords: Bioheat transfer, Electrode, Neuroprosthetics, TENS, Transcutaneous stimulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2231
594 Experimental Investigation and Hardness Analysis of Chromoly Steel Multipass Welds Using GMAW

Authors: Ramesh S., Sasiraaju A. S., Sidhaarth K., Sudhan Rajkumar N., Manivel Muralidaran V.

Abstract:

This work presents the result of investigations aimed at determining the hardness of the welded Chromoly (A 4130) steel plate of 2” thickness. Multi pass welding for the thick sections was carried out and analyzed for the Chromoly alloy steel plates. The study of hardness at the weld metal reveals that there is the presence of different micro structure products which yields diverse properties. The welding carried out using GMAW with ER70s-2 electrode. Single V groove design was selected for the butt joint configuration. The presence of hydrogen has been suppressed by selecting low hydrogen electrode. Preheating of the plate prior to welding reduces the cooling rate which also affects the weld metal microstructure. The shielding gas composition used in this analysis is 80% Ar-20% CO2. The experimental analysis gives the detailed study of the hardness of the material.

Keywords: Chromoly, Gas Metal Arc Weld (GMAW), Hardness, Multi pass weld, Shielding gas composition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2946
593 Structure and Morphology of Electrodeposited Nickel Nanowires at an Electrode Distance of 20mm

Authors: Mahendran Samykano, Ram Mohan, Shyam Aravamudhan

Abstract:

The objective of this work is to study the effect of two key factors - external magnetic field and applied current density during template-based electrodeposition of nickel nanowires using an electrode distance of 20 mm. Morphology, length, crystallite size and crystallographic characterization of the grown nickel nanowires at an electrode distance of 20mm are presented. For this electrode distance of 20 mm, these two key electrodeposition factors when coupled was found to reduce crystallite size with a higher growth length and preferred orientation of Ni crystals. These observed changes can be inferred to be due to coupled interaction forces induced by the intensity of applied electric field (current density) and external magnetic field known as magnetohydrodynamic (MHD) effect during the electrodeposition process.

Keywords: Anodic alumina oxide, electrodeposition, nanowires, nickel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138
592 k-Neighborhood Template A-Type Three-Dimensional Bounded Cellular Acceptor

Authors: Makoto Nagatomo, Yasuo Uchida, Makoto Sakamoto, Tuo Zhang, Tatsuma Kurogi, Takao Ito, Tsunehiro Yoshinaga, Satoshi Ikeda, Masahiro Yokomichi, Hiroshi Furutani

Abstract:

This paper presents a four-dimensional computational model, k-neighborhood template A-type three-dimensional bounded cellular acceptor (abbreviated as A-3BCA(k)), and discusses the hierarchical properties. An A-3BCA(k) is a four-dimensional automaton which consists of a pair of a converter and a configuration-reader. The former converts the given four-dimensional tape to the three- and two- dimensional configuration and the latter determines the acceptance or nonacceptance of given four-dimensional tape whether or not the derived two-dimensional configuration is accepted. We mainly investigate the difference of the accepting power based on the difference of the configuration-reader. It is shown that the difference of the accepting power of the configuration-reader tends to affect directly that of the A-3BCA(k) for the case when the converter is deterministic. On the other hand, results are not analogous for the nondeterministic case.

Keywords: Cellular acceptor, configuration-reader, converter, finite automaton, four-dimension, on-line tessellation acceptor, parallel/sequential array acceptor, turing machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
591 Long-term Monitor of Seawater by using TiO2:Ru Sensing Electrode for Hard Clam Cultivation

Authors: Jung-Chuan Chou, Cheng-Wei Chen

Abstract:

The hard clam (meretrix lusoria) cultivated industry has been developed vigorously for recent years in Taiwan, and seawater quality determines the cultivated environment. The pH concentration variation affects survival rate of meretrix lusoria immediately. In order to monitor seawater quality, solid-state sensing electrode of ruthenium-doped titanium dioxide (TiO2:Ru) is developed to measure hydrogen ion concentration in different cultivated solutions. Because the TiO2:Ru sensing electrode has high chemical stability and superior sensing characteristics, thus it is applied as a pH sensor. Response voltages of TiO2:Ru sensing electrode are readout by instrument amplifier in different sample solutions. Mean sensitivity and linearity of TiO2:Ru sensing electrode are 55.20 mV/pH and 0.999 from pH1 to pH13, respectively. We expect that the TiO2:Ru sensing electrode can be applied to real environment measurement, therefore we collect two sample solutions by different meretrix lusoria cultivated ponds in the Yunlin, Taiwan. The two sample solutions are both measured for 200 seconds after calibration of standard pH buffer solutions (pH7, pH8 and pH 9). Mean response voltages of sample 1 and sample 2 are -178.758 mV (Standard deviation=0.427 mV) and -180.206 mV (Standard deviation =0.399 mV), respectively. Response voltages of the two sample solutions are between pH 8 and pH 9 which conform to weak alkali range and suitable meretrix lusoria growth. For long-term monitoring, drift of cultivated solutions (sample 1 and sample 2) are 1.16 mV/hour and 1.03 mV/hour, respectively.

Keywords: Co-sputtering system, Hard clam (meretrix lusoria), Ruthenium-doped titanium dioxide, Solid-state sensing electrode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
590 A Tubular Electrode for Radiofrequency Ablation Therapy

Authors: Carlos L. Antunes, Tony R. Almeida, Nélia Raposeiro, Belarmino Gonçalves, Paulo Almeida, André Antunes

Abstract:

In the last two decades radiofrequency ablation (RFA) has been considered a promising medical procedure for the treatment of primary and secondary malignancies. However, the needle-based electrodes so far developed for this kind of treatment are not suitable for the thermal ablation of tumors located in hollow organs like esophagus, colon or bile duct. In this work a tubular electrode solution is presented. Numerical and experimental analyses were performed to characterize the volume of the lesion induced. Results show that this kind of electrode is a feasible solution and numerical simulation might provide a tool for planning RFA procedure with some accuracy.

Keywords: 3D modeling, cancer, medical therapy, radiofrequency ablation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
589 Synthesis and Electrochemical Characterization of Iron Oxide / Activated Carbon Composite Electrode for Symmetrical Supercapacitor

Authors: PoiSim Khiew, MuiYen Ho, ThianKhoonTan, WeeSiong Chiu, Roslinda Shamsudin, Muhammad Azmi Abd-Hamid, ChinHua Chia

Abstract:

In the present work, we have developed a symmetric electrochemical capacitor based on the nanostructured iron oxide (Fe3O4)-activated carbon (AC) nanocomposite materials. The physical properties of the nanocomposites were characterized by Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The electrochemical performances of the composite electrode in 1.0 M Na2SO3 and 1.0 M Na2SO4 aqueous solutions were evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The composite electrode with 4 wt% of iron oxide nanomaterials exhibits the highest capacitance of 86 F/g. The experimental results clearly indicate that the incorporation of iron oxide nanomaterials at low concentration to the composite can improve the capacitive performance, mainly attributed to the contribution of the pseudocapacitance charge storage mechanism and the enhancement on the effective surface area of the electrode. Nevertheless, there is an optimum threshold on the amount of iron oxide that needs to be incorporated into the composite system. When this optimum threshold is exceeded, the capacitive performance of the electrode starts to deteriorate, as a result of the undesired particle aggregation, which is clearly indicated in the SEM analysis. The electrochemical performance of the composite electrode is found to be superior when Na2SO3 is used as the electrolyte, if compared to the Na2SO4 solution. It is believed that Fe3O4 nanoparticles can provide favourable surface adsorption sites for sulphite (SO3 2-) anions which act as catalysts for subsequent redox and intercalation reactions.

Keywords: Metal oxide nanomaterials, Electrochemical Capacitor, Double Layer Capacitance, Pseduocapacitance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5581
588 FPGA-based Systems for Evolvable Hardware

Authors: Cyrille Lambert, Tatiana Kalganova, Emanuele Stomeo

Abstract:

Since 1992, year where Hugo de Garis has published the first paper on Evolvable Hardware (EHW), a period of intense creativity has followed. It has been actively researched, developed and applied to various problems. Different approaches have been proposed that created three main classifications: extrinsic, mixtrinsic and intrinsic EHW. Each of these solutions has a real interest. Nevertheless, although the extrinsic evolution generates some excellent results, the intrinsic systems are not so advanced. This paper suggests 3 possible solutions to implement the run-time configuration intrinsic EHW system: FPGA-based Run-Time Configuration system, JBits-based Run-Time Configuration system and Multi-board functional-level Run-Time Configuration system. The main characteristic of the proposed architectures is that they are implemented on Field Programmable Gate Array. A comparison of proposed solutions demonstrates that multi-board functional-level run-time configuration is superior in terms of scalability, flexibility and the implementation easiness.

Keywords: Evolvable hardware, evolutionary computation, FPGA systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2403
587 Obtaining High-Dimensional Configuration Space for Robotic Systems Operating in a Common Environment

Authors: U. Yerlikaya, R. T. Balkan

Abstract:

In this research, a method is developed to obtain high-dimensional configuration space for path planning problems. In typical cases, the path planning problems are solved directly in the 3-dimensional (D) workspace. However, this method is inefficient in handling the robots with various geometrical and mechanical restrictions. To overcome these difficulties, path planning may be formalized and solved in a new space which is called configuration space. The number of dimensions of the configuration space comes from the degree of freedoms of the system of interest. The method can be applied in two ways. In the first way, the point clouds of all the bodies of the system and interaction of them are used. The second way is performed via using the clearance function of simulation software where the minimum distances between surfaces of bodies are simultaneously measured. A double-turret system is held in the scope of this study. The 4-D configuration space of a double-turret system is obtained in these two ways. As a result, the difference between these two methods is around 1%, depending on the density of the point cloud. The disparity between the two forms steadily decreases as the point cloud density increases. At the end of the study, in order to verify 4-D configuration space obtained, 4-D path planning problem was realized as 2-D + 2-D and a sample path planning is carried out with using A* algorithm. Then, the accuracy of the configuration space is proved using the obtained paths on the simulation model of the double-turret system.

Keywords: A* Algorithm, autonomous turrets, high-dimensional C-Space, manifold C-Space, point clouds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 311