Search results for: Polycrystalline silicon film
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 518

Search results for: Polycrystalline silicon film

278 Preparation of n-type Bi2Te3 Films by Electrophoretic Deposition

Authors: Tahereh Talebi, Reza Ghomashchi, Pejman Talemi, Sima Aminorroaya

Abstract:

A high quality crack-free film of Bi2Te3 material has been deposited for the first time using electrophoretic deposition (EPD) and microstructures of various films have been investigated. One of the most important thermoelectric (TE) applications is Bi2Te3 to manufacture TE generators (TEG) which can convert waste heat into electricity targeting the global warming issue. However, the high cost of the manufacturing process of TEGs keeps them expensive and out of reach for commercialization. Therefore, utilizing EPD as a simple and cost-effective method will open new opportunities for TEG’s commercialization. This method has been recently used for advanced materials such as microelectronics and has attracted a lot of attention from both scientists and industry. In this study, the effect of media of suspensions has been investigated on the quality of the deposited films as well as their microstructure. In summary, finding an appropriate suspension is a critical step for a successful EPD process and has an important effect on both the film’s quality and its future properties.

Keywords: Bi2Te3, electrical conductivity, electrophoretic deposition, thermoelectric materials, thick films.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162
277 Characterization of Microroughness Parameters in Cu and Cu2O Nanoparticles Embedded in Carbon Film

Authors: S.Solaymani, T.Ghodselahi, N.B.Nezafat, H.Zahrabi, A.Gelali

Abstract:

The morphological parameter of a thin film surface can be characterized by power spectral density (PSD) functions which provides a better description to the topography than the RMS roughness and imparts several useful information of the surface including fractal and superstructure contributions. Through the present study Nanoparticle copper/carbon composite films were prepared by co-deposition of RF-Sputtering and RF-PECVD method from acetylene gas and copper target. Surface morphology of thin films is characterized by using atomic force microscopy (AFM). The Carbon content of our films was obtained by Rutherford Back Scattering (RBS) and it varied from .4% to 78%. The power values of power spectral density (PSD) for the AFM data were determined by the fast Fourier transform (FFT) algorithms. We investigate the effect of carbon on the roughness of thin films surface. Using such information, roughness contributions of the surface have been successfully extracted.

Keywords: Atomic force microscopy, Fast Fourier transform, Power spectral density, RBS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2431
276 Synthesis of SnO Novel Cabbage Nanostructure and Its Electrochemical Property as an Anode Material for Lithium Ion Battery

Authors: Yongkui Cui, Fengping Wang, Hailai Zhao, Muhammad Zubair Iqbal, Ziya Wang, Yan Li, Pengpeng L. V.

Abstract:

The novel 3D SnO cabbages self-assembled by nanosheets were successfully synthesized via template-free hydrothermal growth method under facile conditions. The XRD results manifest that the as-prepared SnO is tetragonal phase. The TEM and HRTEM results show that the cabbage nanosheets are polycrystalline structure consisted of considerable single-crystalline nanoparticles. Two typical Raman modes A1g=210 and Eg=112 cm-1 of SnO are observed by Raman spectroscopy. Moreover, galvanostatic cycling tests has been performed using the SnO cabbages as anode material of lithium ion battery and the electrochemical results suggest that the synthesized SnO cabbage structures are a promising anode material for lithium ion batteries.

Keywords: Hydrothermal process, lithium ion battery, Raman spectroscopy, stannous oxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
275 Tool Wear of (Ti,W,Si)N-Coated WC-Ni-Based Cemented Carbide in Cutting Hardened Steel

Authors: Tadahiro Wada, Shinichi Enoki, Hiroyuki Hanyu

Abstract:

In this study, WC-Ni-based cemented carbides having different nickel contents were used as the substrate for cutting tool materials. Hardened steel was turned by a (Ti,W,Si)N-coated WC-Ni-based cemented carbide tool, and the tool wear was experimentally investigated. The following results were obtained: (1) In the (Ti,W,Si)N-coated WC-Ni-based cemented carbide, the hardness of the coating film was not much different from the content of the binding material, Ni, and the adhesion strength increased with a decrease in Ni content. (2) There is little difference between the wear progress of the (Ti,W,Si)N-coated WC-7%Ni-based cemented carbide tool and that of the (Ti,W,Si)N-coated WC-6%Co-based cemented carbide tool. (3) The wear progress of the (Ti,W,Si)N-coated WC-Ni-based cemented carbide became slower with a decrease in Ni content.

From the above, it is has become clear that WC-Ni-based cemented carbide can be used as a substrate for cutting tool materials.

Keywords: Rare metals, turning, WC-Ni-based cemented carbide, (Ti, W, Si)N coating film, hardened steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2794
274 Fabrication and Electrical Characterization of Al/BaxSr1-xTiO3/Pt/SiO2/Si Configuration for FeFET Applications

Authors: Ala'eddin A. Saif , Z. A. Z. Jamal, Z. Sauli, P. Poopalan

Abstract:

The ferroelectric behavior of barium strontium titanate (BST) in thin film form has been investigated in order to study the possibility of using BST for ferroelectric gate-field effect transistor (FeFET) for memory devices application. BST thin films have been fabricated as Al/BST/Pt/SiO2/Si-gate configuration. The variation of the dielectric constant (ε) and tan δ with frequency have been studied to ensure the dielectric quality of the material. The results show that at low frequencies, ε increases as the Ba content increases, whereas at high frequencies, it shows the opposite variation, which is attributed to the dipole dynamics. tan δ shows low values with a peak at the mid-frequency range. The ferroelectric behavior of the Al/BST/Pt/SiO2/Si has been investigated using C-V characteristics. The results show that the strength of the ferroelectric hysteresis loop increases as the Ba content increases; this is attributed to the grain size and dipole dynamics effect.

Keywords: BST thin film, Electrical properties, Ferroelectrichysteresis, Ferroelectric FET.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
273 Dye-Sensitized Solar Cell by Plasma Spray

Authors: C.C. Chen, C.C. Wei, S.H. Chen, S.J. Hsieh, W.G. Diau

Abstract:

This paper aims to scale up Dye-sensitized Solar Cell (DSSC) production using a commonly available industrial material – stainless steel - and industrial plasma equipment. A working DSSC electrode formed by (1) coating titania nanotube (TiO2 NT) film on 304 stainless steel substrate using a plasma spray technique; then, (2) filling the nano-pores of the TiO2 NT film using a TiF4 sol-gel method. A DSSC device consists of an anode absorbed photosensitive dye (N3), a transparent conductive cathode with platinum (Pt) nano-catalytic particles adhered to its surface, and an electrolytic solution sealed between the anode and the transparent conductive cathode. The photo-current conversion efficiency of the DSSC sample was tested under an AM 1.5 Solar Simulator. The sample has a short current (Isc) of 0.83 mA cm-2, open voltage (Voc) of 0.81V, filling factor (FF) of 0.52, and conversion efficiency (η) of 2.18% on a 0.16 cm2 DSSC work-piece.

Keywords: DSSC, Spray, stainless steel, TiO2 NT, efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124
272 Acid Fuchsin Dye Based PMMA Film for Holographic Investigations

Authors: G. Vinitha, A. Ramalingam

Abstract:

In view of a possible application in optical data storage devices, diffraction grating efficiency of an organic dye, Acid Fuchsin doped in PMMA matrix was studied under excitation with CW diode pumped Nd: YAG laser at 532 nm. The open aperture Zscan of dye doped polymer displayed saturable absorption and the closed aperture Z-scan of the samples exhibited negative nonlinearity. The diffraction efficiency of the grating is the ratio of the intensity of the first order diffracted power to the incident read beam power. The dye doped polymer films were found to be good media for recording. It is observed that the formation of gratings strongly depend on the concentration of dye in the polymer film, the intensity ratios of the writing beams and the angle between the writing beams. It has been found that efficient writing can be made at an angle of 20o and when the intensity ratio of the writing beams is unity.

Keywords: Diffraction efficiency, Nonlinear Optical material, saturable absorption, Surface-relief-gratings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
271 Mechanical and Thermal Properties of Hybrid Blends of LLDPE/Starch/PVA

Authors: Rahmah, M., Farhan, M., Akidah, N.M.Y

Abstract:

Polybag and mulch film in agricultural field are used plastics which caused environmental problems after transplantation and planting processes due to the discarded wastes. Thus a degradable polybag was designed in this study to replace non degradable polybag with natural biodegradable resin that is widely available, namely sago starch (SS) and polyvinyl alcohol (PVA). Hybrid blend consists of SS, PVA and linear low density polyethylene (LLDPE) was compounded at different ratios. The thermal and mechanical properties of the blends were investigated. Hybrid films underwent landfill degradation tests for up to 2 months. The films showed gelation and melting transition existed for all three systems with significant melting peaks by LLDPE and PVA. All hybrid blends loses its LLDPE semi crystalline characteristics as PVA and SS systems had disrupted crystallinity and enhanced the amorphosity of the hybrid system. Generally, blending SS with PVA improves the mechanical properties of the SS based materials. Tensile strength of each film was also decreased with the increase of SS contents while its modulus had increased with SS content.

Keywords: Appearance peak, LLDPE, PVA, sago starch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2987
270 Numerical Analysis of Laminar Reflux Condensation from Gas-Vapour Mixtures in Vertical Parallel Plate Channels

Authors: Foad Hassaninejadafarahani, Scott Ormiston

Abstract:

Reflux condensation occurs in vertical channels and tubes when there is an upward core flow of vapour (or gas-vapour mixture) and a downward flow of the liquid film. The understanding of this condensation configuration is crucial in the design of reflux condensers, distillation columns, and in loss-of-coolant safety analyses in nuclear power plant steam generators. The unique feature of this flow is the upward flow of the vapour-gas mixture (or pure vapour) that retards the liquid flow via shear at the liquid-mixture interface. The present model solves the full, elliptic governing equations in both the film and the gas-vapour core flow. The computational mesh is non-orthogonal and adapts dynamically the phase interface, thus produces a sharp and accurate interface. Shear forces and heat and mass transfer at the interface are accounted for fundamentally. This modeling is a big step ahead of current capabilities by removing the limitations of previous reflux condensation models which inherently cannot account for the detailed local balances of shear, mass, and heat transfer at the interface. Discretisation has been done based on finite volume method and co-located variable storage scheme. An in-house computer code was developed to implement the numerical solution scheme. Detailed results are presented for laminar reflux condensation from steam-air mixtures flowing in vertical parallel plate channels. The results include velocity and gas mass fraction profiles, as well as axial variations of film thickness.

Keywords: Reflux Condensation, Heat Transfer, Channel, Laminar Flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
269 Effects of Annealing Treatment on Optical Properties of Anatase TiO2 Thin Films

Authors: M. M. Hasan, A. S. M. A. Haseeb, R. Saidur, H. H. Masjuki

Abstract:

In this investigation, anatase TiO2 thin films were grown by radio frequency magnetron sputtering on glass substrates at a high sputtering pressure and room temperature. The anatase films were then annealed at 300-600 °C in air for a period of 1 hour. To examine the structure and morphology of the films, X-ray diffraction (XRD) and atomic force microscopy (AFM) methods were used respectively. From X-ray diffraction patterns of the TiO2 films, it was found that the as-deposited film showed some differences compared with the annealed films and the intensities of the peaks of the crystalline phase increased with the increase of annealing temperature. From AFM images, the distinct variations in the morphology of the thin films were also observed. The optical constants were characterized using the transmission spectra of the films obtained by UV-VIS-IR spectrophotometer. Besides, optical thickness of the film deposited at room temperature was calculated and cross-checked by taking a cross-sectional image through SEM. The optical band gaps were evaluated through Tauc model. It was observed that TiO2 films produced at room temperatures exhibited high visible transmittance and transmittance decreased slightly with the increase of annealing temperatures. The films were found to be crystalline having anatase phase. The refractive index of the films was found from 2.31-2.35 in the visible range. The extinction coefficient was nearly zero in the visible range and was found to increase with annealing temperature. The allowed indirect optical band gap of the films was estimated to be in the range from 3.39 to 3.42 eV which showed a small variation. The allowed direct band gap was found to increase from 3.67 to 3.72 eV. The porosity was also found to decrease at a higher annealing temperature making the film compact and dense.

Keywords: Titanium dioxide, RF reactive sputtering, Structuralproperties, Surface morphology, Optical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3629
268 The Influence of Thermic Plastic Films on Vegetative and Reproductive Growth of Iceberg Lettuce ‘Dublin’

Authors: Wael M. Semida, P. Hadley, W. Sobeih, N. A. El-Sawah, M. A. S. Barakat

Abstract:

Photoselective plastic films with thermic properties are now available so that greenhouses clad with such plastics exhibit a higher degree of “Greenhouse Effect” with a consequent increase in night time temperature. In this study, we investigate the potential benefits of a range of thermic plastic films used as greenhouse cover materials on the vegetative and reproductive growth and development of Iceberg lettuce (Lactuca sativa L). Transplants were grown under thermic films and destructively harvested 4, 5, and 6 weeks after transplanting. Thermic films can increase night temperatures up to 2 ⁰C reducing the wide fluctuation in greenhouse temperature during winter compared to the standard commercial film and consequently increased the yield (leaf number, fresh weight, and dry weight) of lettuce plants. Lettuce plants grown under Clear film respond to cold stress by the accumulation of secondary products (phenolics, and flavonoids).

Keywords: Photoselective plastic films, thermic films, secondary metabolites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034
267 Mechanical Properties of 3D Noninterlaced Cf/SiC Composites Prepared through Hybrid Process (CVI+PIP)

Authors: A. Udayakumar, M. Rizvan Basha, M. Stalin, V.V Bhanu Prasad

Abstract:

Three dimensional non-Interlaced carbon fibre reinforced silicon carbide (3-D-Cf/SiC) composites with pyrocarbon interphase were fabricated using isothermal chemical vapor infiltration (ICVI) combined with polymer impregnation pyrolysis (PIP) process. Polysilazane (PSZ) is used as a preceramic polymer to obtain silicon carbide matrix. Thermo gravimetric analysis (TGA), Infrared spectroscopic analysis (IR) and X-ray diffraction (XRD) analysis were carried out on PSZ pyrolysed at different temperatures to understand the pyrolysis and obtaining the optimum pyrolysing condition to yield β-SiC phase. The density of the composites was 1.94 g cm-3 after the 3-D carbon preform was SiC infiltrated for 280 h with one intermediate polysilazane pre-ceramic PIP process. Mechanical properties of the composite materials were investigated under tensile, flexural, shear and impact loading. The values of tensile strength were 200 MPa at room temperature (RT) and 195 MPa at 500°C in air. The average RT flexural strength was 243 MPa. The lower flexural strength of these composites is because of the porosity. The fracture toughness obtained from single edge notched beam (SENB) technique was 39 MPa.m1/2. The work of fracture obtained from the load-displacement curve of SENB test was 22.8 kJ.m-2. The composites exhibited excellent impact resistance and the dynamic fracture toughness of 44.8 kJ.m-2 is achieved as determined from instrumented Charpy impact test. The shear strength of the composite was 93 MPa, which is significantly higher compared 2-D Cf/SiC composites. Microstructure evaluation of fracture surfaces revealed the signatures of fracture processes and showed good support for the higher toughness obtained.

Keywords: 3-D-Cf/SiC, charpy impact test, composites, dynamic fracture toughness, polysilazane, pyrocarbon, Interphase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2689
266 Evaluation of Cigarette Filters Rods as a Biofilm Carrier in Integrated Fixed Film Activated Sludge Process

Authors: A. Sabzali, M. Nikaeen, B. Bina

Abstract:

The purpose of the experiments described in this article was the comparison of integrated fixed film activated sludge (IFAS) and activated sludge (AS) system. The IFAS applied system consists of the cigarette filter rods (wasted filter in tobacco factories) as a biofilm carrier. The comparison with activated sludge was performed by two parallel treatment lines. Organic substance, ammonia and TP removal was investigated over four month period. Synthetic wastewater was prepared with ordinary tap water and glucose as the main sources of carbon and energy, plus balanced macro and micro nutrients. COD removal percentages of 94.55%, and 81.62% were achieved for IFAS and activated sludge system, respectively. Also, ammonia concentration significantly decreased by increasing the HRT in both systems. The average ammonia removal of 97.40 % and 96.34% were achieved for IFAS and activated sludge system, respectively. The removal efficiency of total phosphorus (TP-P) was 60.64%, higher than AS process by 56.63% respectively.

Keywords: Wastewater, biofilm carrier, cigarette filters rods, Activated Sludge, IFAS, nitrification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
265 Influence of Argon Gas Concentration in N2-Ar Plasma for the Nitridation of Si in Abnormal Glow Discharge

Authors: K. Abbas, R. Ahmad, I. A. Khan, S. Saleem, U. Ikhlaq

Abstract:

Nitriding of p-type Si samples by pulsed DC glow discharge is carried out for different Ar concentrations (30% to 90%) in nitrogen-argon plasma whereas the other parameters like pressure (2 mbar), treatment time (4 hr) and power (175 W) are kept constant. The phase identification, crystal structure, crystallinity, chemical composition, surface morphology and topography of the nitrided layer are studied using X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) respectively. The XRD patterns reveal the development of different diffraction planes of Si3N4 confirming the formation of polycrystalline layer. FTIR spectrum confirms the formation of bond between Si and N. Results reveal that addition of Ar into N2 plasma plays an important role to enhance the production of active species which facilitate the nitrogen diffusion.

Keywords: Crystallinity, glow discharge, nitriding, sputtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
264 Structural and Optical Properties of Pr3+ Doped ZnO and PVA:Zn98Pr2O Nanocomposite Free Standing Film

Authors: Pandiyarajan Thangaraj, Mangalaraja Ramalinga Viswanathan, Karthikeyan Balasubramanian, Héctor D. Mansilla, José Ruiz, David Contreras

Abstract:

In this work, we report, a systematic study on the structural and optical properties of Pr-doped ZnO nanostructures and PVA:Zn98Pr2O polymer matrix nanocomposites free standing films. These particles are synthesized through simple wet chemical route and solution casting technique at room temperature, respectively. Structural studies carried out by X-ray diffraction method confirm that the prepared pure ZnO and Pr doped ZnO nanostructures are in hexagonal wurtzite structure and the microstrain is increased upon doping. TEM analysis reveals that the prepared materials are in sheet like nature. Absorption spectra show free excitonic absorption band at 370 nm and red shift for the Pr doped ZnO nanostructures. The PVA:Zn98Pr2O composite film exhibits both free excitonic and PVA absorption bands at 282 nm. Fourier transform infrared spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials.

Keywords: Pr doped ZnO, polymer nanocomposites, optical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
263 Corrosion Behaviour of Hypereutectic Al-Si Automotive Alloy in Different pH Environment

Authors: M. Al Nur, M. S. Kaiser

Abstract:

Corrosion behaviour of hypereutectic Al-19Si automotive alloy in different pH=1, 3, 5, 7, 9, 11, and 13 environments was carried out using conventional gravimetric measurements and was complemented by resistivity, optical micrograph, scanning electron microscopy (SEM) and X-ray analyzer (EDX) investigations. Gravimetric analysis confirmed that the highest corrosion rate is shown at pH 13 followed by pH 1. Minimum corrosion occurs in the pH range of 3.0 to 11 due to establishment of passive layer on the surface. The highest corrosion rate at pH 13 is due to the presence of sodium hydroxide in the solution which dissolves the surface oxide film at a steady rate. At pH 1, it can be attributed that the presence of aggressive chloride ions serves to pick up the damage of the passive films at localized regions. With varying exposure periods by both, the environment complies with the normal corrosion rate profile that is an initial steep rise followed by a nearly constant value of corrosion rate. Resistivity increases in case of pH 1 solution for the higher pit formation and decreases at pH 13 due to formation of thin film. The SEM image of corroded samples immersed in pH 1 solution clearly shows pores on the surface and in pH 13 solution, and the corrosion layer seems more compact and homogenous and not porous.

Keywords: Al-Si alloy, corrosion, pH, resistivity, SEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 984
262 Development of a Nano-Alumina-Zirconia Composite Catalyst as an Active Thin Film in Biodiesel Production

Authors: N. Marzban, J. K. Heydarzadeh M. Pourmohammadbagher, M. H. Hatami, A. Samia

Abstract:

A nano-alumina-zirconia composite catalyst was synthesized by a simple aqueous sol-gel method using AlCl3.6H2O and ZrCl4 as precursors. Thermal decomposition of the precursor and subsequent formation of γ-Al2O3 and t-Zr were investigated by thermal analysis. XRD analysis showed that γ-Al2O3 and t-ZrO2 phases were formed at 700 °C. FT-IR analysis also indicated that the phase transition to γ-Al2O3 occurred in corroboration with X-ray studies. TEM analysis of the calcined powder revealed that spherical particles were in the range of 8-12 nm. The nano-alumina-zirconia composite particles were mesoporous and uniformly distributed in their crystalline phase. In order to measure the catalytic activity, esterification reaction was carried out. Biodiesel, as a renewable fuel, was formed in a continuous packed column reactor. Free fatty acid (FFA) was esterified with ethanol in a heterogeneous catalytic reactor. It was found that the synthesized γ-Al2O3/ZrO2 composite had the potential to be used as a heterogeneous base catalyst for biodiesel production processes.

Keywords: Nano-alumina-zirconia, composite catalyst, thin film, biodiesel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
261 Investigation of Tribological Behavior of Electrodeposited Cr, Co-Cr and Co-Cr/TiO2 Nano-Composite Coatings

Authors: S. Mahdavi, S. R. Allahkaram

Abstract:

Electrodeposition is a simple and economic technique for precision coating of different shaped substrates with pure metal, alloy or composite films. Dc electrodeposition was used to produce Cr, Co-Cr and Co-Cr/TiO2 nano-composite coatings from Cr(III) based electrolytes onto 316L SS substrates. The effects of TiO2 nanoparticles concentration on co-deposition of these particles along with Cr content and microhardness of the coatings were investigated. Morphology of the Cr, Co-Cr and Co-Cr/TiO2 coatings besides their tribological behavior were studied. The results showed that increment of TiO2 nanoparticles concentration from 0 to 30 g L-1 in the bath increased their co-deposition and Cr content of the coatings from 0 to 3.5 wt.% and from 23.7 to 31.2 wt.%, respectively. Microhardness of Cr coating was about 920 Hv which was higher than Co-Cr and even Co-Cr/TiO2 films. Microhardness of Co-Cr and Co-Cr/TiO2 coatings were improved by increasing their Cr and TiO2 content. All the coatings had nodular morphology and contained microcracks. Nodules sizes and the number of microcracks in the alloy and composite coatings were lower than the Cr film. Wear results revealed that the Co-Cr/TiO2 coating had the lowest wear loss between all the samples, while the Cr film had the worst wear resistance.

Keywords: Co-Cr alloy, electrodeposition, nano-composite, tribological behavior, trivalent chromium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2764
260 Optical Properties of WO3-NiO Complementary Electrochromic Devices

Authors: Chih-Ming Wang, Chih-Yu Wen, Ying-Chung Chen, Chun-Chieh Wang, Chien-Chung Hsu, Jui-Yang Chang, Jyun-Min Lin

Abstract:

In this study, we developed a complementary electrochromic device consisting of WO3 and NiO films fabricated by rf-magnetron sputtered. The electrochromic properties of WO3 and NiO films were investigated using cyclic voltammograms (CV), performed on WO3 and NiO films immersed in an electrolyte of 1 M LiClO4 in propylene carbonate (PC). Optical and electrochemical of the films, as a function of coloration–bleaching cycle, were characterized using an UV-Vis-NIR spectrophotometer and cyclic voltammetry (CV). After investigating the properties of WO3 film, NiO film, and complementary electrochromic devices, we concluded that this device provides good reversibility, low power consumption of -2.5 V in color state, high variation of transmittance of 58.96%, changes in optical density of 0.81 and good memory effect under open-circuit conditions. In addition, electrochromic component penetration rate can be retained below 20% within 24h, showing preferred memory features; however, component coloring and bleaching response time are about 33s.

Keywords: Complementary electrochromic device, Rf-magnetron sputtered, Transmittance, Memory effect, Optical density change

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3169
259 Finite Element Analysis of Oil-Lubricated Elliptical Journal Bearings

Authors: Marco T. C. Faria

Abstract:

Fixed-geometry hydrodynamic journal bearings are one of the best supporting systems for several applications of rotating machinery. Cylindrical journal bearings present excellent loadcarrying capacity and low manufacturing costs, but they are subjected to the oil-film instability at high speeds. An attempt of overcoming this instability problem has been the development of non-circular journal bearings. This work deals with an analysis of oil-lubricated elliptical journal bearings using the finite element method. Steadystate and dynamic performance characteristics of elliptical bearings are rendered by zeroth- and first-order lubrication equations obtained through a linearized perturbation method applied on the classical Reynolds equation. Four-node isoparametric rectangular finite elements are employed to model the bearing thin film flow. Curves of elliptical bearing load capacity and dynamic force coefficients are rendered at several operating conditions. The results presented in this work demonstrate the influence of the bearing ellipticity on its performance at different loading conditions.

Keywords: Elliptical journal bearings, non-circular journal bearings, hydrodynamic bearings, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3180
258 Effect of Oxygen Annealing on the Surface Defects and Photoconductivity of Vertically Aligned ZnO Nanowire Array

Authors: Ajay Kushwaha, Hemen Kalita, M. Aslam

Abstract:

Post growth annealing of solution grown ZnO nanowire array is performed under controlled oxygen ambience. The role of annealing over surface defects and their consequence on dark/photo-conductivity and photosensitivity of nanowire array is investigated. Surface defect properties are explored using various measurement tools such as contact angle, photoluminescence, Raman spectroscopy and XPS measurements. The contact angle of the NW films reduces due to oxygen annealing and nanowire film surface changes from hydrophobic (96°) to hydrophilic (16°). Raman and XPS spectroscopy reveal that oxygen annealing improves the crystal quality of the nanowire films. The defect band emission intensity (relative to band edge emission, ID/IUV) reduces from 1.3 to 0.2 after annealing at 600 °C at 10 SCCM flow of oxygen. An order enhancement in dark conductivity is observed in O2 annealed samples, while photoconductivity is found to be slightly reduced due to lower concentration of surface related oxygen defects.

Keywords: Zinc Oxide, Surface defects, Photoluminescence, Photoconductivity, Photosensor and Nanowire thin film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3509
257 Gas-Liquid Flow on Smooth and Textured Inclined Planes

Authors: J.J. Cooke, S. Gu, L.M. Armstrong, K.H. Luo

Abstract:

Carbon Capture & Storage (CCS) is one of the various methods that can be used to reduce the carbon footprint of the energy sector. This paper focuses on the absorption of CO2 from flue gas using packed columns, whose efficiency is highly dependent on the structure of the liquid films within the column. To study the characteristics of liquid films a CFD solver, OpenFOAM is utilised to solve two-phase, isothermal film flow using the volume-of-fluid (VOF) method. The model was validated using existing experimental data and the Nusselt theory. It was found that smaller plate inclination angles, with respect to the horizontal plane, resulted in larger wetted areas on smooth plates. However, only a slight improvement in the wetted area was observed. Simulations were also performed using a ridged plate and it was observed that these surface textures significantly increase the wetted area of the plate. This was mainly attributed to the channelling effect of the ridges, which helped to oppose the surface tension forces trying to minimise the surface area. Rivulet formations on the ridged plate were also flattened out and spread across a larger proportion of the plate width.

Keywords: CCS, liquid film flow, packed columns, wetted area

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
256 Lactic Acid-Chitosan Films’ Properties and Their in vivo Wound Healing Activity

Authors: T. S. Moe, T. A. Khaing

Abstract:

Chitosan is a derivative of chitin, a compound usually isolated from the shells of some crustaceans such as crab, lobster and shrimp. It has biocompatible, biodegradable, and antimicrobial properties. To use these properties of chitosan in biomedical fields, chitosan films (1%, 2%, 3% and 4%) were prepared by using l% lactic acid as solvent. The effects of chitosan films on tensile strength, elongation at break, degree of swelling, thickness, morphology, allergic and irritation reactions and antibacterial property were evaluated. Staphylococcus aureus and Escherichia coli were used as tested microorganisms. In vivo wound healing activities of chitosan films were investigated using mice model. As results, Chitosan films have similar appearance and good swelling properties and 4% chitosan film showed the better swelling activity and the greatest elongation ratio than the other chitosan films. They also showed their good activity of wound healing in mice model. Moreover, the results showed that the films did not produce any unwilling symptoms (allergy or irritation). In conclusion, it is evident that the chitosan film has the potentiality to use as wound healing biofilms in the biomedical fields.

Keywords: Chitosan, wound healing, antibacterial activity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2590
255 Dielectric and Impedance Spectroscopy of Samarium and Lanthanum Doped Barium Titanate at Room Temperature

Authors: Sukhleen Bindra Narang, Dalveer Kaur, Kunal Pubby

Abstract:

Dielectric ceramic samples in the BaO-Re2O3-TiO2 ternary system were synthesized with structural formula Ba2- xRe4+2x/3Ti8O24 where Re= rare earth metal and Re= Sm and La where x varies from 0.0 to 0.6 with step size 0.1. Polycrystalline samples were prepared by the conventional solid state reaction technique. The dielectric, electrical and impedance analysis of all the samples in the frequency range 1KHz- 1MHz at room temperature (25°C) have been done to get the understanding of electrical conduction and dielectric relaxation and their correlation. Dielectric response of the samples at lower frequencies shows dielectric dispersion while at higher frequencies it shows dielectric relaxation. The ac conductivity is well fitted by the Jonscher law. The spectroscopic data in the impedance plane confirms the existence of grain contribution to the relaxation. All the properties are found out to be function of frequency as well as the amount of substitution.

Keywords: Dielectric ceramics, Dielectric constant, Loss tangent, AC conductivity, Impedance spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2474
254 Effects of Polluted Water on the Metallic Water Pipelines

Authors: Abdul-Khaliq M. Hussain, Bashir A. Tantosh, El-Sadeg A. Abdalla

Abstract:

Corrosion of metallic water pipelines buried below ground surface is a function of the nature of the surrounding soil and groundwater. This gives the importance of knowing the physical and chemical characteristics of the pipe-s surrounding environment. The corrosion of externally – unprotected metallic water pipelines, specially ductile iron pipes, in localities with aggressive soil conditions is becoming a significant problem. Anticorrosive protection for metallic water pipelines, their fittings and accessories is very important, because they may be attached by corrosion with time. The tendency of a metallic substrate to corrode is a function of the surface characteristics of the metal and of the metal/protective film interface, the physical, electrical and electrochemical properties of the film, and the nature of the environment in which the pipelines system is placed. In this work the authors have looked at corrosion problems of water pipelines and their control. The corrosive properties of groundwater and soil environments are reviewed, and parameters affecting corrosion are discussed. The purpose of this work is to provide guidelines for materials selection in water and soil environments, and how the water pipelines can be protected against metallic corrosion.

Keywords: Corrosion, Drinking Water, Metallic WaterPipelines, Polluted Water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753
253 Sustainable Cities: Viability of a Hybrid Aeroponic/Nutrient Film Technique System for Cultivation of Tomatoes

Authors: D. Dannehl, Z. Taylor, J. Suhl, L. Miranda, R., Ulrichs, C., Salazar, E. Fitz-Rodriguez, I. Lopez-Cruz, A. Rojano-Aguilar, G. Navas-Gomez, U. Schmidt

Abstract:

Growing environmental and sustainability concerns have driven continual modernization of horticultural practices, especially for urban farming. Controlled environment and soilless production methods are increasing in popularity because of their efficient resource use and intensive cropping capabilities. However, some popular substrates used for hydroponic cultivation, particularly rock wool, represent a large environmental burden in regard to their manufacture and disposal. Substrate-less hydroponic systems are effective in producing short cropping cycle plants such as lettuce or herbs, but less information is available for the production of plants with larger root-systems and longer cropping times. Here, we investigated the viability of a hybrid aeroponic/nutrient film technique (AP/NFT) system for the cultivation of greenhouse tomatoes (Solanum lycopersicum ‘Panovy’). The plants grown in the AP/NFT system had a more compact phenotype, accumulated more Na+ and less P and S than the rock wool grown counterparts. Due to forced irrigation interruptions, we propose that the differences observed were cofounded by the differing severity of water-stress for plants with and without substrate. They may also be caused by a higher root zone temperature predominant in plants exposed to AP/NFT. However, leaf area, stem diameter, and number of trusses did not differ significantly. The same was found for leaf pigments and plant photosynthetic efficiency. Overall, the AP/NFT system appears to be viable for the production of greenhouse tomato, enabling the environment to be relieved by way of lessening rock wool usage.

Keywords: Aeroponic/nutrient film technique, greenhouse, nutrient dynamic, soilless culture, urban farming, waste reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
252 The Way Digitized Lectures and Film Presence Coaching Impact Academic Identity: An Expert Facilitated Participatory Action Research Case Study

Authors: Amanda Burrell, Tonia Gary, David Wright, Kumara Ward

Abstract:

This paper explores the concept of academic identity as it relates to the lecture, in particular, the digitized lecture delivered to a camera, in the absence of a student audience. Many academics have the performance aspect of the role thrust upon them with little or no training. For the purpose of this study, we look at the performance of the academic identity and examine tailored film presence coaching for its contributions toward academic identity, specifically in relation to feelings of self-confidence and diminishment of discomfort or stage fright. The case is articulated through the lens of scholar-practitioners, using expert facilitated participatory action research. It demonstrates in our sample of experienced academics, all reported some feelings of uncertainty about presenting lectures to camera prior to coaching. We share how power poses and reframing fear, produced improvements in the ease and competency of all participants. We share exactly how this insight could be adapted for self-coaching by any academic when called to present to a camera and consider the relationship between this and academic identity.

Keywords: Academic identity, embodied learning, digitized lecture, performance coaching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 826
251 Design of Coherent Thermal Emission Source by Excitation of Magnetic Polaritons between Metallic Gratings and an Opaque Metallic Film

Authors: Samah G. Babiker, Yong Shuai, Mohamed Osman Sid-Ahmed, Ming Xie, Mu Lei

Abstract:

The present paper studies a structure consisting of a periodic metallic grating, coated on a dielectric spacer atop an opaque metal substrate, using coherent thermal emission source in the infrared region. It has been theoretically demonstrated that by exciting surface magnetic polaritons between metallic gratings and an opaque metallic film, separated by a dielectric spacer, large emissivity peaks are almost independent of the emission angle and they can be achieved at the resonance frequencies. The reflectance spectrum of the proposed structure shows two resonances dip, which leads to a sharp emissivity peak. The relations of the reflection and absorption properties and the influence of geometric parameters on the radiative properties are investigated by rigorous coupled-wave analysis (RCWA). The proposed structure can be easily constructed, using micro/nanofabrication and can be used as the coherent thermal emission source.

Keywords: Coherent thermal emission, Polartons, Reflectance, Resonance frequency, Rigorous coupled wave analysis (RCWA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
250 The Effects of Applied Negative Bias Voltage on Structure and Optical Properties of α-C:H Films

Authors: X. L. Zhou, S. Tunmee, I. Toda, K. Komatsu, S. Ohshio, H. Saitoh

Abstract:

Hydrogenated amorphous carbon (a-C:H) films have been synthesized by a radio frequency plasma enhanced chemical vapor deposition (rf-PECVD) technique with different bias voltage from 0.0 to -0.5 kV. The Raman spectra displayed the polymer-like hydrogenated amorphous carbon (PLCH) film with 0.0 to -0.1 and a-C:H films with -0.2 to -0.5 kV of bias voltages. The surface chemical information of all films were studied by X-ray photoelectron spectroscopy (XPS) technique, presented to C-C (sp2 and sp3) and C-O bonds, and relative carbon (C) and oxygen (O) atomics contents. The O contamination had affected on structure and optical properties. The true density of PLCH and a-C:H films were characterized by X-ray refractivity (XRR) method, showed the result as in the range of 1.16-1.73 g/cm3 that depending on an increasing of bias voltage. The hardness was proportional to the true density of films. In addition, the optical properties i.e. refractive index (n) and extinction coefficient (k) of these films were determined by a spectroscopic ellipsometry (SE) method that give formation to in 1.62-2.10 (n) and 0.04-0.15 (k) respectively. These results indicated that the optical properties confirmed the Raman results as presenting the structure changed with applied bias voltage increased.

Keywords: Negative bias voltage, a-C:H film, Oxygen contamination, Optical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5417
249 Ni Metallization on SiGe Nanowire

Authors: Y. Li, K. Buddharaju, X. P. Wang

Abstract:

The mechanism of nickel (Ni) metallization in silicon-germanium (Si0.5Ge0.5) alloy nanowire (NW) was studied. Transmission electron microscope imaging with in-situ annealing was conducted at temperatures of 200oC to 600°C. During rapid formation of Ni germanosilicide, loss of material from from the SiGe NW occurred which led to the formation of a thin Ni germanosilicide filament and eventual void. Energy dispersive X-ray spectroscopy analysis along the SiGe NW before and after annealing determined that Ge atoms tend to out-diffuse from the Ni germanosilicide towards the Ni source in the course of annealing. A model for the Ni germanosilicide formation in SiGe NW is proposed to explain this observation.

Keywords: SiGe, nanowires, germanosilicide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746