Structural and Optical Properties of Pr3+ Doped ZnO and PVA:Zn98Pr2O Nanocomposite Free Standing Film
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Structural and Optical Properties of Pr3+ Doped ZnO and PVA:Zn98Pr2O Nanocomposite Free Standing Film

Authors: Pandiyarajan Thangaraj, Mangalaraja Ramalinga Viswanathan, Karthikeyan Balasubramanian, Héctor D. Mansilla, José Ruiz, David Contreras

Abstract:

In this work, we report, a systematic study on the structural and optical properties of Pr-doped ZnO nanostructures and PVA:Zn98Pr2O polymer matrix nanocomposites free standing films. These particles are synthesized through simple wet chemical route and solution casting technique at room temperature, respectively. Structural studies carried out by X-ray diffraction method confirm that the prepared pure ZnO and Pr doped ZnO nanostructures are in hexagonal wurtzite structure and the microstrain is increased upon doping. TEM analysis reveals that the prepared materials are in sheet like nature. Absorption spectra show free excitonic absorption band at 370 nm and red shift for the Pr doped ZnO nanostructures. The PVA:Zn98Pr2O composite film exhibits both free excitonic and PVA absorption bands at 282 nm. Fourier transform infrared spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials.

Keywords: Pr doped ZnO, polymer nanocomposites, optical properties.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1100116

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2238

References:


[1] L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, A. Deepthy, and Bindu Krishnan, “Size dependent fluorescence spectroscopy of nanocolloids of ZnO,” J. Appl. Phys., vol. 102, pp. 063524-6, September 2007.
[2] Nikolaos Tombros, Alina Veligura, Juliane Junesch, Marcos H. D. Guimarães, Ivan J. Vera-Marun, Harry T. Jonkma, Bart J. van Wees, “Quantized conductance of a suspended graphene nanoconstriction,” Nature Physics vol. 7, pp. 697–700, June 2011.
[3] R. Viswanatha, S. Sapra, B. Satpati, P. V. Satyam, B. N. Dev and D. D. Sarma, “Understanding the quantum size effects in ZnO nanocrystals,” J. Mater. Chem., vol. 14, pp. 661-668, October 2004.
[4] M. Dvorak, S.H. Wei and Z. Wu, “Origin of the Variation of Exciton Binding Energy in Semiconductors,” Phys. Rev. Lett., vol. 110, pp. 016402 (1-4), January 2013.
[5] A. E. Suliman, Y. Tang and L. Xu, “Preparation of ZnO nanostructures and nanosheets and their application to dye-sensitized solar cells,” Solar Energy Materials and Solar Cells vol. 91, pp. 1658–1662, November 2007.
[6] P. Li , Z. Wei , T. Wu, Q. Peng and Y.Li, “Au−ZnO Hybrid Nanopyramids and Their Photocatalytic Properties” J. Am. Chem. Soc., vol. 133, pp 5660–5663, March 2011.
[7] Z. Fan, D. Wang, P. C. Chang, W.Y. Tseng and J. G. Lu, “ZnO nanowire field-effect transistor and oxygen sensing property,” Appl. Phys. Lett., vol. 85, pp. 5923-5925, December 2004.
[8] S. Nair, A. Sasidharan, V. V. Divya Rani, D. Menon, S. Nair, K. Manzoor and S. Raina, “Role of size scale of ZnO nanostructures and microparticles on toxicity toward bacteria and osteoblast cancer cells,” J Mater Sci: Mater Med., vol.20, pp. S235–S241, April 2009.
[9] K.F. Lin, H. M. Cheng, H.C. Hsu, L.J. Lin, and W.F. Hsieh, “Band gap variation of size-controlled ZnO quantum dots synthesized by sol–gel method,” Chem. Phys. Lett., vol. 409, pp. 208–211, June 2005.
[10] H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, and D. Que, “Low Temperature Synthesis of Flowerlike ZnO Nanostructures by Cetyltrimethylammonium Bromide-Assisted Hydrothermal Process”, J. Phys. Chem. B, vol. 108, pp 3955–3958, March 2004.
[11] A.B. Hartanto, X. Ning, Y. Nakata, and T. Okada, “Growth mechanism of ZnO nanorods from nanoparticles formed in a laser ablation plume”, Appl. Phys. A vol. 78, pp. 299–301, February 2004.
[12] J. Wang and L. Gao, “Wet chemical synthesis of ultralong and straight single-crystalline ZnO nanowires and their excellent UV emission properties,” J. Mater. Chem., vol. 13, pp. 2551-2554, August 2003.
[13] P. Ilanchezhiyan, G. Mohan Kumar, M. Subramanian and R. Jayavel, “Effect of Pr doping on the structural and optical properties of ZnO nanorods,” Mater. Sci. Eng. B vol. 175, pp. 238–242 December 2010.
[14] Y. Inoue, M. Okamoto and J. Morimoto, “Enhancement of green photoluminescence from ZnO:Pr powders,” J. Mater. Res., vol. 21, pp. 1476-1483 June 2006.
[15] H. Li, K. Luo, M. Xia and P. W. Wang, “Synthesis and optical properties of Pr3+-doped ZnO quantum dots” J. Non-Crystalline Solids, vol. 383, pp.176–180 January 2014.
[16] N. Ohashi, S. Mitarai and O. Fukunaga, “Magnetization and Electric Properties of Pr-doped ZnO,” J. Electroceram., Vol 4, pp. 61–68 December 1999.
[17] S.Y. Chun and N. Mizutani, “Mass transport via grain boundary in Prbased ZnO varistors and related electrical effects,” Mater. Sci. Eng. B vol. 79, pp. 1–5 January 2001.
[18] G. H. Gelinck, H. E. A. Huitema, E. Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H. van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito,F. J. Touwslager, A. W. Marsman, B.J. E. van Rens and D. M. D. Leeuw, “Flexible active-matrix displays and shift registers based on solution-processed organic transistors,” Nature Mater., vol. 3, pp.106- 110, January 2004.
[19] M. Cavallini, J. G. Segura, D. R. Molina, M. Massi, C. Albonetti, C. Rovira, J. Veciana and F. Biscarini, “Magnetic Information Storage on Polymers by Using Patterned Single-Molecule Magnets,” Angew. Chem. Int. Ed., vol. 44, pp. 888-892 January 2005.
[20] B. Karthikeyan, M. Anija, Reji Philip, In situ synthesis and nonlinear optical properties of Au:Ag nanocomposite polymer films, Appl. Phys. Lett., vol. 88, pp. 053104-3 January 2006.
[21] Y. Rosenberg, V.S. Machavariani, V. Voronel, S. Garber, A. Rubshtein, A.I. Frenkel, E.A. Stern, “Strain energy density in the X-ray powder diffraction from mixed crystals and alloys,” J. Phys., Condens Matter., vol. 12, pp. 8081–8088, July 2000.
[22] S. Clemenson, L. David, and E. Espuche, “Structure and morphology of nanocomposite films prepared from polyvinyl alcohol and silver nitrate: Influence of thermal treatmen,” J. Polymer Sci.: Part A: Polymer Chem., vol. 45, pp 2657–2672, July 2007.
[23] H. Li, K. Luo, M. Xia, P. W. Wang, "Synthesis and optical properties of Pr3+ doped ZnO quantum dots", J. Non-Crystalline Solids vol. 383, pp. 176–180, June 2014.
[24] K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1973.
[25] M. Ghosh, N. Dilawar, A.K. Bandyopadhyay, A.K. Raychaudhuri, “Phonon dynamics of Zn (Mg, Cd) O alloy nanostructures and their phase segregation,” J. Appl. Phys., vol. 106, pp. 084306 (1-6) October 2009.
[26] T. Pandiyarajan, B. Karthikeyan, “Optical properties of annealing induced post growth ZnO:ZnFe2O4 nanocomposites,” Spectrochimica Acta A, vol. 106, pp. 247–252, January 2013.
[27] H. S. Mansur, C. M. Sadahira, A. N. Souza, A.A.P. Mansur, “FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde,” Mater. Sci. Eng. C vol. 28, pp. 539–548, December 2008.