Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Dye-Sensitized Solar Cell by Plasma Spray
Authors: C.C. Chen, C.C. Wei, S.H. Chen, S.J. Hsieh, W.G. Diau
Abstract:
This paper aims to scale up Dye-sensitized Solar Cell (DSSC) production using a commonly available industrial material – stainless steel - and industrial plasma equipment. A working DSSC electrode formed by (1) coating titania nanotube (TiO2 NT) film on 304 stainless steel substrate using a plasma spray technique; then, (2) filling the nano-pores of the TiO2 NT film using a TiF4 sol-gel method. A DSSC device consists of an anode absorbed photosensitive dye (N3), a transparent conductive cathode with platinum (Pt) nano-catalytic particles adhered to its surface, and an electrolytic solution sealed between the anode and the transparent conductive cathode. The photo-current conversion efficiency of the DSSC sample was tested under an AM 1.5 Solar Simulator. The sample has a short current (Isc) of 0.83 mA cm-2, open voltage (Voc) of 0.81V, filling factor (FF) of 0.52, and conversion efficiency (η) of 2.18% on a 0.16 cm2 DSSC work-piece.Keywords: DSSC, Spray, stainless steel, TiO2 NT, efficiency
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1084456
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162References:
[1] Y.T. Sul, C.B. Johansson, Med. Eng. Phys. 23 (2001) 329.
[2] H. Habazaki, M. Uozumi, Electrochem. Acta 47 (2002) 3837.
[3] F. Schlotting, J. Schreckenbach, Appl. Surf. Sci. 90 (1995) 129.
[4] D. Gong, C.A. Grimes, O.K. Varghese, Z. Chen, W.C. Hu, E.C. Dickey, J. Mater. Res., 16 (2001) 3331.
[5] R. Wang, K. Hashimoto, Nature 388 (1997) 431.
[6] M. Gratzel, Nature 409 (2001) 575.
[7] T. Ohtsuka, T. Otsuki, J. Electroanal. Chem. 473 (1999) 272.
[8] O-Regan, B.; Grätzel, M. Nature 1991, 353, 737.
[9] Grätzel, M. Nature 2001, 414, 338.
[10] Nazeeruddin, M. K.; Angelis, F. D.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835.
[11] Wei, M.; Konishi, Y.; Zhou, H.; Yanagida, M.; Sugihara, H.; Arakawa, H. J. Mater. Chem. 2006, 16, 1287.
[12] Koide, N.; Islam, A.; Chiba, Y.; Han, L. J. Photochem. Photobio. A 2006, 182, 296.
[13] Kong, F. T.; Dai, S. Y.; Wang, K. J. Advances in Opto Electronics 2007, 1.
[14] Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. Nano Lett. 2007, 7, 69.
[15] Gong, D.; Grimes, C. A.; Varghese, O. K.; Chen, Z.; Hu, W. C.; Dickey, E. C. J. Mater. Res. 2001, 16, 3331.
[16] Cai, Q.; Paulose, M.; Varghese, O. K.; Grimes, C. A. J. Mater. Res. 2005, 20, 230.
[17] Grimes, C. A. J. Mater. Chem. 2007, 17, 1451.
[18] Chen, C. C.; Diau, E. W. G.; Hsieh, S. J.; Say, W. C. Applied Physics A 2009, Accepted.
[19] Chen, C. C.; Chen, J. H.; Chao, C. G. Jpn. J. Appl. Phys. 2005, 44, 1529.
[20] Mor, G. K.; Shanka, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nano Lett. 2006, 6, 215.
[21] Paulose, M.; Prakasam, H. E.; Varghese, O. K.; Peng, L.; Popat, K. C.; Mor, G. K.; Desai, T. A.; Grimes, C. A. J. Phys. Chem. C 2007 111,14992.
[22] Albu, S.P.; Ghicov, A.; Macak, J. M.; Hahn, R.; Schmuki, P. Nano Lett. 2007, 7, 1286.
[23] Chen, Q.; Xu, D.; Wu, Z.; Liu, Z. Nanotechnology 2008, 193, 65708.
[24] Park, J. H.; Lee, T. W.; Kang, M. G. Chem. Comm. 2008, 2867.