Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31108
Synthesis of SnO Novel Cabbage Nanostructure and Its Electrochemical Property as an Anode Material for Lithium Ion Battery

Authors: Yongkui Cui, Fengping Wang, Hailai Zhao, Muhammad Zubair Iqbal, Ziya Wang, Yan Li, Pengpeng L. V.


The novel 3D SnO cabbages self-assembled by nanosheets were successfully synthesized via template-free hydrothermal growth method under facile conditions. The XRD results manifest that the as-prepared SnO is tetragonal phase. The TEM and HRTEM results show that the cabbage nanosheets are polycrystalline structure consisted of considerable single-crystalline nanoparticles. Two typical Raman modes A1g=210 and Eg=112 cm-1 of SnO are observed by Raman spectroscopy. Moreover, galvanostatic cycling tests has been performed using the SnO cabbages as anode material of lithium ion battery and the electrochemical results suggest that the synthesized SnO cabbage structures are a promising anode material for lithium ion batteries.

Keywords: hydrothermal process, lithium ion battery, stannous oxide, Raman spectroscopy

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593


[1] Kuang Q, Jiang Z-Y, Xie Z-X, Lin S-C, Lin Z-W, Xie S-Y, et al. Journal of the American Chemical Society. 2005; 127:11777-84.
[2] Ding YS, Shen XF, Gomez S, Luo H, Aindow M, Suib SL. Advanced Functional Materials. 2006; 16:549-55.
[3] Watson J. Sensors and Actuators. 1984; 5:29-42.
[4] Xia W, Wang H, Zeng X, Han J, Zhu J, Zhou M, et al. CrystEngComm. 2014; 16:6841.
[5] Iqbal MZ, Wang F, Rafique MY, Ullah A, Qiu H. Materials Letters. 2012; 78:50-3.
[6] Odani A, Nimberger A, Markovsky B, Sominski E, Levi E, Kumar VG, et al. Development and testing of nanomaterials for rechargeable lithium batteries. Journal of Power Sources2003. p. 517-21.
[7] Aurbach D, Nimberger A, Markovsky B, Levi E, Sominski E, Gedanken A. Chemistry of materials. 2002;14:4155-63.
[8] Iqbal MZ, Wang F, Zhao H, Rafique MY, Wang J, Li Q. Scripta Materialia. 2012;67:665-8.
[9] Krishnakumar T, Pinna N, Kumari KP, Perumal K, Jayaprakash R. Materials letters. 2008;62:3437-40.
[10] Iqbal MZ, Wang F, Javed Q-u-a, Rafique MY, Qiu H, Nabi G. Materials Letters. 2012;75:236-9.
[11] Uchiyama H, Imai H. Crystal growth & design. 2007;7:841-3.
[12] Iqbal MZ, Wang F, Feng T, Zhao H, Rafique MY, Rafi ud D, et al. Materials Research Bulletin. 2012;47:3902-7.
[13] Shin JH, Song JY, Kim YH, Park HM. Materials Letters. 2010;64:1120-2.
[14] Dai ZR, Pan ZW, Wang ZL. Journal of the American Chemical Society. 2002;124:8673-80.
[15] Ning J, Dai Q, Jiang T, Men K, Liu D, Xiao N, et al. Langmuir : the ACS journal of surfaces and colloids. 2008;25:1818-21.
[16] Kumar B, Lee D-H, Kim S-H, Yang B, Maeng S, Kim S-W. The Journal of Physical Chemistry C. 2010;114:11050-5.
[17] Orlandi MO, Leite ER, Aguiar R, Bettini J, Longo E. The Journal of Physical Chemistry B. 2006;110:6621-5.
[18] Wachtler M, Winter M, Besenhard JO. Journal of Power Sources. 2002;105:151-60.
[19] Meduri P, Pendyala C, Kumar V, Sumanasekera GU, Sunkara MK. Nano Letters. 2009;9:612-6.
[20] Kim K-C, Lee D-H, Maeng S. Materials Letters. 2012;86:119-21.
[21] Luo H, Liang LY, Cao HT, Liu ZM, Zhuge F. ACS applied materials & interfaces. 2012;4:5673-7.
[22] Batzill M, Diebold U. Progress in Surface Science. 2005;79:47-154.
[23] Chen MH, Huang ZC, Wu GT, Zhu GM, You JK, Lin ZG. Materials Research Bulletin. 2003;38:831-6.
[24] Ying Z, Wan Q, Cao H, Song ZT, Feng SL. Applied Physics Letters. 2005;87:-.
[25] Terra J, Guenzburger D. PhRvB. 1991;44:8584.
[26] Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T. Science. 1997;276:1395-7.
[27] Paek S-M, Yoo E, Honma I. Nano Letters. 2008;9:72-5.
[28] Wang X, Zhou X, Yao K, Zhang J, Liu Z. Carbon. 2011;49:133-9.
[29] Fan J, Wang T, Yu C, Tu B, Jiang Z, Zhao D. Advanced materials. 2004;16:1432-6.
[30] Sivashanmugam A, Kumar TP, Renganathan NG, Gopukumar S, Wohlfahrt-Mehrens M, Garche J. Journal of Power Sources. 2005;144:197-203.