Influence of Argon Gas Concentration in N2-Ar Plasma for the Nitridation of Si in Abnormal Glow Discharge
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32804
Influence of Argon Gas Concentration in N2-Ar Plasma for the Nitridation of Si in Abnormal Glow Discharge

Authors: K. Abbas, R. Ahmad, I. A. Khan, S. Saleem, U. Ikhlaq

Abstract:

Nitriding of p-type Si samples by pulsed DC glow discharge is carried out for different Ar concentrations (30% to 90%) in nitrogen-argon plasma whereas the other parameters like pressure (2 mbar), treatment time (4 hr) and power (175 W) are kept constant. The phase identification, crystal structure, crystallinity, chemical composition, surface morphology and topography of the nitrided layer are studied using X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) respectively. The XRD patterns reveal the development of different diffraction planes of Si3N4 confirming the formation of polycrystalline layer. FTIR spectrum confirms the formation of bond between Si and N. Results reveal that addition of Ar into N2 plasma plays an important role to enhance the production of active species which facilitate the nitrogen diffusion.

Keywords: Crystallinity, glow discharge, nitriding, sputtering.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1125437

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479

References:


[1] H. Klemm, “Silicon nitride for high-temperature applications,” J. Am. Ceram. Soc., vol. 93, pp. 1501–1522, 2010.
[2] W. Xu, B. Li, T. Fujimoto, I. Kojima, “Gas flow effects on the structure and composition of SiN /Si/SiNx films prepared by radio-frequency magnetron sputtering,” J. Mater. Res., vol. 16, pp. 308-313, 2001.
[3] A. Batan, A. Franquet, J. Vereecken, F. Reniers, “Characterization of the silicon nitride thin films deposited by plasma magnetron,” Surface and Interface Analysis, vol. 40, pp. 754–757, 2008.
[4] V. Pavarajarn, S. Kimura S, “Roles of hydrogen and oxygen in the direct nitridation of silicon,” Ind Eng Chem Res., vol. 42, pp. 2434-2440, 2003.
[5] S. J. Patil, S. A. Gangal, “Activated reactive evaporation deposited silicon nitride as a masking material for MEMS fabrication,” J. Micromech. Microeng., vol. 15, pp. 1956–1962, 2005.
[6] Y. Kuo, H. H. Lee, “Plasma enhanced chemical vapor deposition of silicon nitride below 250˚C,” Vacuum, vol. 66, pp. 299-303, 2002.
[7] J. Yang, R. C. Guzman, S. O. Salley, K. Y. Simon, B. H. Chen, M. M. C. Cheng, “Plasma enhanced chemical vapor deposition silicon nitride for a high-performance lithium ion battery anode,” Journal of Power Sources, vol. 269, pp. 520-525, 2014.
[8] T. C. Tsai, L. R. Lou, C. T. Lee, “Influence of deposition conditions on silicon nanoclusters in silicon nitride films grown by Laser-Assisted CVD Method,” IEEE Transactions on nanotechnology, vol. 10, pp. 197-202, 2011.
[9] I. A. Khan, R.S. Rawat , R. Verma, G. Macharaga, R. Ahmad, “Role of charge particles irradiation on the deposition of AlN films using plasma focus device,” Journal of Crystal Growth, vol. 317, pp. 98–103, 2011.
[10] A. Bogaerts, E. Neyts, R. Gijbels, J. V. Mullen, “Gas discharge plasmas and their applications,” Spectrochimica Acta, vol. 57B, pp. 609-658, 2002.
[11] M. Moradshahi, T. Tavakoli, S. Amiri, S. Shayeganmehr, “Plasma nitriding of Al alloys by DC glow discharge,” Surface & Coatings Technology, vol. 201, pp.567–574, 2006.
[12] J. Liu, F. Sun, H. Yu, “Enhancement of the molecular nitrogen dissociation and ionization levels by argon mixture in flue nitrogen plasma,” Curr Appl Phys., vol. 5, pp. 625-628, 2005.
[13] M. Tabbal, M. Kazpoulo, T. Chritidis, S. Isber, “Enhancement of the molecular nitrogen dissociation levels by argon dilution in surface-wave-sustained plasmas,” J Appl Phys., vol. 78, pp. 2131, 2001.
[14] M. A. Naveed, A. Qayyum, A. Shujaat, M. Zakaullah, “Effects of helium gas mixing on the production of active species in nitrogen plasma,” Physics Letters A, vol. 359, pp. 499-503, 2006.
[15] A. Saeed, A. W. Khan, M. Shafiq, F. Jan, M. Abrar, M. Zakaulislam, M. Zakaullah, “Investigation of 50 Hz pulsed DC nitrogen plasma with active screen cage by trace rare gas optical emission spectroscopy,” Plasma Science and Technology, vol. 16, pp. 324-328, 2014.
[16] P. G. Reyesa, C. Torresa, H. Martínez, “Electron temperature and ion density measurements in a glow discharge of an Ar–N2 mixture,” Radiation Effects & Defects in Solids, vol. 169, pp. 285–292, 2014.
[17] F. U. Khan, N. U. Rehman, S. Naseer, M. Y. Naz, N. A. D. Khattak, M. Zakaullah, “Effect of excitation and ibrational temperature on the dissociation of nitrogen molecules in Ar-N2 mixture RF discharge,” Spectroscopy Letters, vol. 44, pp. 194–202, 2011.
[18] M. Quast, P. Mayer, H. R. Stock, H. Podlesak, B. Wielage, “In situ and ex situ examination of plasma-assisted nitriding of aluminium alloys,” Surf Coat Technol., vol. 135, pp. 238-249, 2001.
[19] M. K. Sharma, B. K. Saikia, S. Bujarbarua, “Optical emission spectroscopy of DC pulsed plasmas used for steel nitriding,” Surface & Coatings Technology, vol. 203, pp. 229–233, 2008.
[20] Z. Wronski, “Dissociation of nitrogen in the plasma-cathode interface of Glow discharges,” Vacuum, vol. 78, pp. 641-647, 2005.
[21] K. Kusaka, D. Taniguchi, T. Hanabusa, K. Tominaga, “Effect of input power on crystal orientation and residual stress in AlN film deposited by dc sputtering,” Vacuum, vol. 59, pp. 806-813, 2000.
[22] R. S. Rawat, P. Arun, A. G. Vedeshwar, P. Lee, S. Lee, “Effect of energetic ion irradiation on CdI2 films,” J Appl Phys., vol. 95, pp. 7725 – 7730, 2004.
[23] P. Tyagi, R. K. Mishra, N. C. Mehra, A. G. Vedeshwar, “Dependence of optical band gap on residual stress in group IIB Iodide (ZnI2, CdI2, HgI2) films,” Integr Ferroelectr., vol. 122, pp. 52-62, 2010.
[24] C. Sarioglu, U. Demirler, M. K. Kazmanli, M. Urgen, “Measurement of residual stresses by x-ray diffraction techniques in MoN and Mo2N coatings deposited by arc PVD on high-speed steel substrate,” Surf Coat Technol., vol. 190, pp. 238-243, 2005.
[25] D. F. Moore, R. M. Bostock, P. Boyl, E. H. Conradie, “Materials issues in the application of silicon nitride films in silicon MEMS,” MRS Fall Meeting, 687, 2001.
[26] J. J. Olaya, S.E. Rodil, S. Muhl, E. Sanchez, “Comparative study of chromium nitride coatings deposited by unbalanced and balanced magnetron sputtering,” Thin Solid Films, vol. 474, pp. 119-126, 2005.
[27] A. Barata, L. Cunha, C. Moura, “Characterisation of chromium nitride films produced by PVD techniques,” Thin Solid Films vol. 398-399, pp. 501-506, 2001.
[28] K. Nunan, G. Ready,P. Garone, G. Sturdy, J. Sledziewski, “Developing a manufacturable process for the deposition of thick polysilicon films for micro machined devices,” IEEE/SEMI Advanced Semiconductor Manufacturing Conference 0-7803-5921-6/00/$10.00 0 2000 IEEE, pp. 357-366, 2000.
[29] E. Tomasella, F. Rebib, M. Dubois, J. Cellier, M. Jacquet, “Structural and optical properties studies of sputtered a-SiCN thin films,” Journal of Physics Conference Series, vol. 100, pp. 082045, 2008.
[30] M. Vila, C. Prieto, P. Miranzo, M. I. Osendi, R. Ramırez, “Characterization of Si3N4 thin films prepared by r.f. magnetron sputtering,” Surface and Coatings Technology, vol. 151 – 152, pp. 67–71, 2002.
[31] M. Vila, J. A. Gago, A. M. Martin, C. Prieto, P. Miranzo, M. I. Osendi, J. G. Lopez, M. A. Respaldiza, “Compositional characterization of silicon nitride thin films prepared by RF-sputtering,” Vacuum, vol. 67, pp. 513–518, 2002.
[32] Y. Zhou, D. Probst, A. Thissen, E. Kroke, R. Riedel, R. Hauser, H. Hoche, E. Broszeit, P. Knoll, H. Stafast, “Hard silicon carbonitride films obtained by RF-plasma-enhanced chemical vapor deposition using the single-source precursor bis(trimethylsilyl) carbodiimide,” J. Eur. Ceram. Soc., vol. 26, pp. 1325-1335, 2006.
[33] A. Hassan, “Surface modification of metals using plasma torch,” Proceedings of the 7th Conference on Nuclear and Particle Physics. Sharm El-Sheikh Egypt, pp. 595-603, 2009.
[34] F. M. El-Hossarry, “The influence of surface microcracks and temperature gradients on the rf plasma nitriding rate,” Surf. Coat. Technol., vol. 150, pp. 277–281, 2002.
[35] L. Pranevicious, C. Templier, J. R. Riviere, P. Meheust, L. L. Pranevicius, G. Abrasonis, “On the mechanism of ion nitriding of an austenitic stainless steel,” Surf. Coat. Technol., vol. 135, pp. 250-257, 2001.