%0 Journal Article
	%A Marco T. C. Faria
	%D 2015
	%J International Journal of Mechanical and Mechatronics Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 101, 2015
	%T Finite Element Analysis of Oil-Lubricated Elliptical Journal Bearings
	%U https://publications.waset.org/pdf/10001153
	%V 101
	%X Fixed-geometry hydrodynamic journal bearings are
one of the best supporting systems for several applications of rotating
machinery. Cylindrical journal bearings present excellent loadcarrying
capacity and low manufacturing costs, but they are subjected
to the oil-film instability at high speeds. An attempt of overcoming
this instability problem has been the development of non-circular
journal bearings. This work deals with an analysis of oil-lubricated
elliptical journal bearings using the finite element method. Steadystate
and dynamic performance characteristics of elliptical bearings
are rendered by zeroth- and first-order lubrication equations obtained
through a linearized perturbation method applied on the classical
Reynolds equation. Four-node isoparametric rectangular finite
elements are employed to model the bearing thin film flow. Curves of
elliptical bearing load capacity and dynamic force coefficients are
rendered at several operating conditions. The results presented in this
work demonstrate the influence of the bearing ellipticity on its
performance at different loading conditions.

	%P 721 - 726