Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30517
A High Thermal Dissipation Performance Polyethyleneterephthalate Heat Pipe

Authors: Sih-Li Chen, Chih-Hao Chen, Chih-Chieh Chen, Guan-Wei Wu


A high thermal dissipation performance polyethylene terephthalate heat pipe has been fabricated and tested in this research. Polyethylene terephthalate (PET) is used as the container material instead of copper. Copper mesh and methanol are sealed in the middle of two PET films as the wick structure and working fluid. Although the thermal conductivity of PET (0.15-0.24 W/m·K) is much smaller than copper (401 W/m·K), the experiment results reveal that the PET heat pipe can reach a minimum thermal resistance of 0.146 (oC/W) and maximum effective thermal conductivity of 18,310 (W/m·K) with 36.9 vol% at 26 W input power. However, when the input power is larger than 30 W, the laminated PET will debond due to the high vapor pressure of methanol.

Keywords: Thermal Resistance, PET, effective thermal conductivity, heat pipe

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2527


[1] X. L. Xie, Y. L. He, W. Q. Tao, H. W. Yang, “ An experimental investigation on a novel high-performance integrated heat pipe-heat sink for high-flux chip cooling,” Appl. Therm. Eng., vol. 28, pp.433–439, Apr. 2008.
[2] Y. C. Weng, H. P. Cho, C. C. Chang, S. L. Chen, “ Heat pipe with PCM for electronic cooling, ” Appl. Energy, vol. 88, pp. 1825–1833, May 2011.
[3] T. Dobre, O. C. Pârvulescu, A. Stoica, G. Iavorschi, “Characterization of cooling systems based on heat pipe principle to control operation temperature of high-tech electronic components, ” Appl. Therm. Eng., vol. 30, pp. 2435–2441, Nov. 2010.
[4] G. Pei, H. Fu, H. Zhu, J. Ji, “ Performance study and parametric analysis of a novel heat pipe PV/T system, ” Energy, vol. 37, pp. 384–395, Jan. 2012.
[5] G. Pei, H. Fu, J. Ji, T. Chow, T. Zhang, “Annual analysis of heat pipe PV/T systems for domestic hot water and electricity production,” Energy Conv. Manag., vol. 56, pp. 8–21, Apr. 2012.
[6] W. Hea, Y. Su, S. B. Riffat, J. X. Hou, J. Ji, “ Parametrical analysis of the design and performance of a solar heat pipe thermoelectric generator unit, ” Appl. Energy, vol. 88, pp. 5083–508, Dec. 2011.
[7] N. Miljkovic, E. N. Wang, “Modeling and optimization of hybrid solar thermoelectric systems with thermosyphons,” Sol. Energy, vol. 85, pp. 2843–2855, Nov. 2011.
[8] P. Meena, S. Rittidech, N. Poomsa-ad, “ Closed-loop oscillating heat-pipe with check valves (CLOHP/CVs) air-preheater for reducing relative humidity in drying systems, ”Appl. Energy, vol. 84, pp. 363–373, Apr. 2007.
[9] S. Rittidech, N. Pipatpaiboon, P. Terdtoon, “Heat-transfer characteristics of a closed-loop oscillating heat-pipe with check valves,” Appl. Energy, vol. 84, pp.565–577, May 2007.
[10] D. A. Reay, P. A. Kew, Heat pipes, 5th ed., Butterworth-Heinemann, Boston, 2006.
[11] K. Take, R. L. Webb, “Thermal performance of integrated plate heat pipe with a heat spreader,” J. Electron. Packag., vol. 123, pp. 189–195, Apr. 2000.
[12] S. Lips, F. Lefèvre, J. Bonjou, “Nucleate boiling in a flat grooved heat pipe,” Int. J. Therm. Sci., vol. 48, pp. 1273–1278, July 2009.
[13] G. S. Hwang, Y. Nam, E. Fleming, P. Dussinger, Y. S. Ju, M. Kaviany, “Multi-artery heat pipe spreader: Experiment, ” Int. J. Heat Mass Transf., vol. 53, pp. 2662–2669, June 2010.
[14] J. Wang, “Experimental investigation of the transient thermal performance of a bent heat pipe with grooved surface,” Appl. Energy, vol. 86, pp. 2030–2037, Oct. 2009.
[15] Y. X. Wang, G. P. Peterson, “Capillary evaporation in microchanneled polymer films,” J. Thermophys. Heat Transf. vol.17, pp.354–359, July-Sep. 2003.
[16] K. Tanaka, Y. Abe, M. Nakagawa, C. Piccolo, R. Savinoe, “ Low-gravity experiments of lightweight fexible heat pipe panels with self-rewetting fluids, ” Ann. NY. Acad. Sci., vol. 1161, pp. 554–561, Apr. 2009.
[17] W.W. Wits, T. H. J. Vaneker, “Integrated design and manufacturing of flat miniature heat pipes using printed circuit board technology,” IEEE Trans. Compon. Pack. Technol., vol. 33, pp. 398–408, June 2010.
[18] C. Oshman, B. Shi, C. Li, R. Yang, Y. C. Lee, G. P. Peterson, et al., “ The development of polymer-Based flat heat pipes, ” J. Microelectromech. Syst., vol. 20, pp. 410–417, Apr. 2011.
[19] H. Chang, G. Wang, A. Yang, X. Tao, X. Liu, Y. Shen, et al., “ A transparent, flexible, low-temperature, and solution-processible graphene composite electrode, ” Adv. Funct. Mater., vol. 20, pp. 2893–2902, Sep. 2010.
[20] C. Feng, K. Liu, J. S. Wu, L. Liu, J. S. Cheng, Y. Zhang, et al., “ Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes, ” Adv. Funct. Mater., vol. 20, pp. 885–891, Mar. 2010.
[21] S. Lips, F. Lefèvre, J. Bonjour, “Combined effects of the filling ratio and the vapour space thickness on the performance of a flat plate heat pipe,” Int. J. Heat Mass Transf., vol. 53, pp. 694–702, Jan. 2010.
[22] A. A. El-Nasr, S. M. El-Haggar, “Effective thermal conductivity of heat pipes,” Heat Mass Transf., vol. 32, pp. 97–101, Nov. 1996.
[23] RC Dorf. The engineering handbook, 2nd ed., Boca Raton, CRC Press, 2004.