Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30075
Self-Propelled Intelligent Robotic Vehicle Based on Octahedral Dodekapod to Move in Active Branched Pipelines with Variable Cross-Sections

Authors: Sergey N. Sayapin, Anatoly P. Karpenko, Suan H. Dang


Comparative analysis of robotic vehicles for pipe inspection is presented in this paper. The promising concept of self-propelled intelligent robotic vehicle (SPIRV) based on octahedral dodekapod for inspection and operation in active branched pipelines with variable cross-sections is reasoned. SPIRV is able to move in pipeline, regardless of its spatial orientation. SPIRV can also be used to move along the outside of the pipelines as well as in space between surfaces of annular tubes. Every one of faces of the octahedral dodekapod can clamp/unclamp a thing with a closed loop surface of various forms as well as put pressure on environmental surface of contact. These properties open new possibilities for its applications in SPIRV. We examine design principles of octahedral dodekapod as future intelligent building blocks for various robotic vehicles that can self-move and self-reconfigure.

Keywords: Modular robot, octahedral dodekapod, pipe inspection robot, spatial parallel structure.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780


[1] S. G. Roh and H. R. Choi, “Development of Differntail-Drive In-pipe Robot for Moving Inside Urban Gas Pipelines,” IEEE Trans. on Robotics, vol. 21, no. 1, pp. 1-17, February 2005.
[2] V. G. Gradetsky, M. M. Knyazkov, L.F. Fomin, and V. G. Chashchukhin, Miniature robot mechanics. Moscow: Nauka, 2010.
[3] A. Bekhit., A. Dehghani, R. Richardson, “Kinematic Analysis and Locomotion Strategy of a Pipe Inspection Robot Concept for Operation in Active Pipelines,” International Journal of Mechanical Engineering and Mechatronics, vol. 1, issue 1, pp. 15-27, 2012.
[4] M. Almonacid, R. J. Saltarén, R. Aracil, and O. Reinoso, “Motion Planning of a Climbing Parallel Robot,” IEEE Trans. on Robotics and Automation, vol. 19, no. 3, pp. 485-489, June 2003.
[5] R. Saltaren, R. Aracil, and O. Reinoso, “Analysis of Climbing Parallel Robot for Construction Applications,” Computer-Aided Civil and Infrastructure Engineering, vol. 19, pp. 436-445, 2004.
[6] S. Sakamoto, F. Hara, H. Hosokai, et. al. “Parallel-Link Robot for Pipe,” Industrial Electronics Society, 2005. IECON 2005. 31st Annual Conference of IEEE, 6-10 Nov. 2005, pp. 345-350.
[7] M. Urdaneta, C. Garcia, G. Poletti, et. al. “Development of a Novel Autonomous Robot for Navigation and Inspect in Oil Wells,” Control Engineering and Applied Informatics. J., vol. 14, no. 3, pp. 9-14, 2012.
[8] R. Saltaren, R. Aracil, O. Reinoso and E. Yime, “Climbing with Parallel Robots,” in Bioinspiration and Robotics: Walking and Climbing Robots, Maki K. Habib, Ed., Vienna, Austria, EU: I-Tech, 2007, pp. 209-226.
[9] S. N. Sayapin and A.V. Sineov, “Adaptive mobile 3D manipulator robot and method of organizing displacements and control over physical-mechanical properties, geometrical shape of contact surface and displacement trajectory hereby,” Russian Federation Patent 2 424 893, January 11, 2009 (in Russian).
[10] S. N. Sayapin, “Parallel spatial robots of dodecapod type,” Journal of Machinery Manufacture and Reliability, Allerton Press, USA, vol. 41, no. 6, pp. 457-466. Dec. 2012.
[11] S. Sayapin, A. Karpenko, and D. X. Hiep, “Dodekapod as universal intelligent structure for adaptive parallel spatial self-moving modular robots,” in Nature-Inspired Mobile Robotics. Proceedings of the 16th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, Editors: Kenneth J. Waldron, Mohammad O. Tokhi, Gurvinder S. Virk, Singapore: World Scientific, 2013, pp. 163-170.
[12] F. Enner, D. Rollinson, and H. Choset, “Motion Estimation of Snake Robots in Straight Pipes,” in Proc. IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, May 6-10, 2013, pp. 5148-5153.
[13] S. N. Sayapin, A. P. Karpenko, and S. H. Dang, “Universal adaptive spatial parallel robots of module type based on the Platonic solids,” in Proc. Annu. World Congress on Engineering, London, 2014, pp. 1365-1370.