Loop Heat Pipe: Simple Thermodynamic
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32825
Loop Heat Pipe: Simple Thermodynamic

Authors: Mohammad Hamdan, Emad Elnajjar

Abstract:

The LHP is a two-phase device with extremely high effective thermal conductivity that utilizes the thermodynamic pressure difference to circulate a cooling fluid. A thermodynamics analytical model is developed to explore different parameters effects on a Loop Heat Pipe (LHP).. The effects of pipe length, pipe diameter, condenser temperature, and heat load are reported. As pipe length increases and/or pipe diameter decreases, a higher temperature is expected in the evaporator.

Keywords: Loop Heat Pipe, LHP, Passive Cooling, CapillaryForce.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1083745

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2759

References:


[1] Yu.F. Maydanik, Review Loop heat pipes, Applied Thermal Engineering, 25 (2005) 635-657.
[2] Alklaibi, A.M., Evaluating the possible configurations of incorporating the loop heat pipe into the air-conditioning systems, International Journal of Refrigeration (2008), doi:10.1016/j.ijrefrig. 2007.11.007
[3] L. L. Vasiliev, Review Heat pipes in modern heat exchangers, Applied Thermal Engineering, 25 (2005) 1-19
[4] Chernysheva M.A., Vershinin S.V., Maydanik Yu. F., Operating temperature and distribution of a working fluid in LHP, International Journal of Heat and Mass Transfer, 50 (2007) 2704-2713.
[5] Chandratilleke C., Hatakeyama H., and Nakagome H., Development of Cryogenic Loop Heat Pipes, Cryogenics, 38, 3, 263-269.
[6] Hoelke, H.T. Henderson, F. M. Gerner and M. Kazmierczak, Analysis of the Heat Transfer Capacity of a Micromachined Loop Heat Pipe, International Mechanical Engineering Congress and Exposition, IMECE, ASME Publication HTD-Vol. 364-3, 53-60, November 15-20, 1999, Nashville, Tennessee.
[7] Maidanik Y., Vershinin S., Kholodov V., and Dolggirev J., Heat Transfer Apparatus, US patent 4515209, May (1985).
[8] Dhir V., Kandlikar S., Fujita Y., Iida Y., and Heist R., Nucleate Boiling, Handbook of Phase Change: Boiling and Condensation, Editor Kandlikar S., Shoji M., and Dhir V., Ch. 4, pp 71-120, (1999).
[9] Nikitkin M., and Cullimore B., CPL and LHP Technologies: What are the Differences, What are the Similarities?, SAE Paper 981587, (1998).
[10] Hamdan, M., Gerner, F., Henderson, T., Steady State Model of a Loop Heat Pipe (LHP) With Coherent Porous Silicon (CPS) Wick in the Evaporator, The Nineteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp 88-96, (2003).
[11] Hoang T. T., Ku J., Miniature Loop Heat pipes for Electronic Cooling, Proceedings of IPACK03, International Electronic Packaging Technical Conference and Exhibition, July 6-11, (2003), Maui, Hawaii, USA.
[12] Kaya T., Mathematical Modeling of Loop Heat Pipes and Experimental Validation, J. of Thermophysics & Heat Transfer, 13, 3, (1999), 314- 320.
[13] Launay S., Sartre V., Parametric analysis of loop heat pipe operation: a literature review, Jocelyn Bonjour, International Journal of Thermal Sciences 46 (2007) 621-636.
[14] R. Singh et al., Operational characteristics of a miniature loop heat pipe with flat evaporator, International Journal of Thermal Sciences (2008), doi:10.1016/j.ijthermalsci.2007.12.013
[15] Hamdan M., Cytrynowicz D., Medis P., Shuja A.,Gerner F., Henderson H., Golliher E., Mellott K., Moore C., Loop Heat Pipe (LHP) Development by Utilizing Coherent Porous Silicon (CPS) Wicks, Proceedings of the 8th ITHERM Conference, May 29-June 2, (2002), 457-465.
[16] Cytrynowicz D., Hamdan M., Medis P., Shuja A.,Gerner F., Henderson H., Golliher E., Mellott K., Moore C., "MEMS Loop Heat Pipe Based on Coherent Porous Silicon Technology", Proceeding the Space Technology and Applications International Forum, (2002) 220-232 .
[17] Cytrynowicz, D., Hamdan, M., Medis, P., Henderson, T., Gerner, F., Golliher, E., "Test Cell for a Novel Planar MEMS Loop Heat Pipe Based on Coherent Porous Silicon", Space Technology and Applications International Forum, February 2 - 6, (2003), Albuquerque, New Mexico.
[18] J. M. Cimbala, J. S. Brenizer, Jr, A. Po-Ya Chuang, S. Hanna, C. T. Conroy, A.A. El-Ganayni, D. R. Riley, Study of a loop heat pipe using neutron radiography, Applied Radiation and Isotopes, 61 (2004) 701- 705.
[19] Kaviany M., Principle of Heat Transfer in Porous Media, 2nd ed., Springer, New York, 1995.
[20] Ku J., "Operating Characteristics of Loop Heat pipes", 1999, 29th International Conference on Environmental system, Denver, Colorado, July 1999.