Search results for: vertical silicon nanowire.
462 Optimum Surface Roughness Prediction in Face Milling of High Silicon Stainless Steel
Authors: M. Farahnakian, M.R. Razfar, S. Elhami-Joosheghan
Abstract:
This paper presents an approach for the determination of the optimal cutting parameters (spindle speed, feed rate, depth of cut and engagement) leading to minimum surface roughness in face milling of high silicon stainless steel by coupling neural network (NN) and Electromagnetism-like Algorithm (EM). In this regard, the advantages of statistical experimental design technique, experimental measurements, artificial neural network, and Electromagnetism-like optimization method are exploited in an integrated manner. To this end, numerous experiments on this stainless steel were conducted to obtain surface roughness values. A predictive model for surface roughness is created by using a back propogation neural network, then the optimization problem was solved by using EM optimization. Additional experiments were performed to validate optimum surface roughness value predicted by EM algorithm. It is clearly seen that a good agreement is observed between the predicted values by EM coupled with feed forward neural network and experimental measurements. The obtained results show that the EM algorithm coupled with back propogation neural network is an efficient and accurate method in approaching the global minimum of surface roughness in face milling.
Keywords: cutting parameters, face milling, surface roughness, artificial neural network, Electromagnetism-like algorithm,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586461 Prediction of the Dynamic Characteristics of a Milling Machine Using the Integrated Model of Machine Frame and Spindle Unit
Authors: Jui P. Hung, Yuan L. Lai, Tzuo L. Luo, Hsi H. Hsiao
Abstract:
The machining performance is determined by the frequency characteristics of the machine-tool structure and the dynamics of the cutting process. Therefore, the prediction of dynamic vibration behavior of spindle tool system is of great importance for the design of a machine tool capable of high-precision and high-speed machining. The aim of this study is to develop a finite element model to predict the dynamic characteristics of milling machine tool and hence evaluate the influence of the preload of the spindle bearings. To this purpose, a three dimensional spindle bearing model of a high speed engraving spindle tool was created. In this model, the rolling interfaces with contact stiffness defined by Harris model were used to simulate the spindle bearing components. Then a full finite element model of a vertical milling machine was established by coupling the spindle tool unit with the machine frame structure. Using this model, the vibration mode that had a dominant influence on the dynamic stiffness was determined. The results of the finite element simulations reveal that spindle bearing with different preloads greatly affect the dynamic behavior of the spindle tool unit and hence the dynamic responses of the vertical column milling system. These results were validated by performing vibration on the individual spindle tool unit and the milling machine prototype, respectively. We conclude that preload of the spindle bearings is an important component affecting the dynamic characteristics and machining performance of the entire vertical column structure of the milling machine.Keywords: Dynamic compliance, Milling machine, Spindle unit, Bearing preload.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3651460 Experimental Study on the Hysteresis Properties in Operation of Vertical Axis Wind Turbines
Authors: Ching-Huei Lin, Yao-Pang Hsu, M. Z. Dosaev, Yu. D. Selyutskii, L. A. Klimina
Abstract:
Hysteresis phenomenon has been observed in the operations of both horizontal-axis and vertical-axis wind turbines (HAWTs and VAWTs). In this study, wind tunnel experiments were applied to investigate the characters of hysteresis phenomena between the angular speed and the external resistance of electrical loading during the operation of a Darrieus type VAWT. Data of output voltage, output current, angular speed of wind turbine under different wind speeds are measured and analyzed. Results show that the range of external resistance changes with the wind speed. The range decreases as the wind speed increases following an exponential decay form. Experiments also indicate that the maximum output power of wind turbines is always inside the range where hysteresis happened. These results provide an important reference to the design of output control system of wind turbines.Keywords: Hysteresis phenomenon, Angular speed, Range ofexternal resistance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2463459 Synergy in Vertical Transformations of Expert Designers
Authors: G. Haupt
Abstract:
Existing literature ondesign reasoning seems to give either one sided accounts on expert design behaviour based on internal processing. In the same way ecological theoriesseem to focus one sidedly on external elementsthat result in a lack of unifying design cognition theory. Although current extended design cognition studies acknowledge the intellectual interaction between internal and external resources, there still seems to be insufficient understanding of the complexities involved in such interactive processes. As such,this paper proposes a novelmulti-directional model for design researchers tomap the complex and dynamic conduct controlling behaviour in which both the computational and ecological perspectives are integrated in a vertical manner. A clear distinction between identified intentional and emerging physical drivers, and relationships between them during the early phases of experts- design process, is demonstrated by presenting a case study in which the model was employed.Keywords: External representation, early phases, extended design cognition, internal processes and external drivers, conduct controlling behaviour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1250458 Parametric Analysis of Effective Factors on the Seismic Rehabilitation of the Foundations by Network Micropile
Authors: Keivan Abdollahi, Alireza Mortezaei
Abstract:
The main objective of seismic rehabilitation in the foundations is decreasing the range of horizontal and vertical vibrations and omitting high frequencies contents under the seismic loading. In this regard, the advantages of micropiles network is utilized. Reduction in vibration range of foundation can be achieved by using high dynamic rigidness module such as deep foundations. In addition, natural frequency of pile and soil system increases in regard to rising of system rigidness. Accordingly, the main strategy is decreasing of horizontal and vertical seismic vibrations of the structure. In this case, considering the impact of foundation, pile and improved soil foundation is a primary concern. Therefore, in this paper, effective factors are studied on the seismic rehabilitation of foundations applying network micropiles in sandy soils with nonlinear reaction.Keywords: Micropile network, rehabilitation, vibration, seismic load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028457 Numerical Investigation on Load Bearing Capacity of Pervious Concrete Piles as an Alternative to Granular Columns
Authors: Ashkan Shafee, Masoud Ghodrati, Ahmad Fahimifar
Abstract:
Pervious concrete combines considerable permeability with adequate strength, which makes it very beneficial in pavement construction and also in ground improvement projects. In this paper, a single pervious concrete pile subjected to vertical and lateral loading is analysed using a verified three dimensional finite element code. A parametric study was carried out in order to investigate load bearing capacity of a single unreinforced pervious concrete pile in saturated soft soil and also gain insight into the failure mechanism of this rather new soil improvement technique. The results show that concrete damaged plasticity constitutive model can perfectly simulate the highly brittle nature of the pervious concrete material and considering the computed vertical and horizontal load bearing capacities, some suggestions have been made for ground improvement projects.
Keywords: Concrete damaged plasticity, ground improvement, load bearing capacity, pervious concrete pile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1047456 Effect of Blade Number on a Straight-Bladed Vertical-Axis Darreius Wind Turbine
Authors: Marco Raciti Castelli, Stefano De Betta, Ernesto Benini
Abstract:
This paper presents a mean for reducing the torque variation during the revolution of a vertical-axis wind turbine (VAWT) by increasing the blade number. For this purpose, twodimensional CDF analysis have been performed on a straight-bladed Darreius-type rotor. After describing the computational model, a complete campaign of simulations based on full RANS unsteady calculations is proposed for a three, four and five-bladed rotor architecture characterized by a NACA 0025 airfoil. For each proposed rotor configuration, flow field characteristics are investigated at several values of tip speed ratio, allowing a quantification of the influence of blade number on flow geometric features and dynamic quantities, such as rotor torque and power. Finally, torque and power curves are compared for the analyzed architectures, achieving a quantification of the effect of blade number on overall rotor performance.Keywords: CFD, VAWT, NACA 0021, blade number
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5336455 Automatic Design Algorithm for the Tower Crane Foundations
Authors: Sungho Lee, Goonjae Lee, Chaeyeon Lim, Sunkuk Kim
Abstract:
Foundation of tower crane serves to ensure stability against vertical and horizontal forces. If foundation stress is not sufficient, tower crane may be subject to overturning, shearing or foundation settlement. Therefore, engineering review of stable support is a highly critical part of foundation design. However, there are not many professionals who can conduct engineering review of tower crane foundation and, if any, they have information only on a small number of cranes in which they have hands-on experience. It is also customary to rely on empirical knowledge and tower crane renter-s recommendations rather than designing foundation on the basis of engineering knowledge. Therefore, a foundation design automation system considering not only lifting conditions but also overturning risk, shearing and vertical force may facilitate production of foolproof foundation design for experts and enable even non-experts to utilize professional knowledge that only experts can access now. This study proposes Automatic Design Algorithm for the Tower Crane Foundations considering load and horizontal force.Keywords: Tower Crane, Automatic Design, Foundations, Optimization Algorithm, Stability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7214454 Implementation Gas Lift Selection Technique and Design in the Wafa Field of Ghadamis Basin, West Libya
Authors: E. I. Fandi, E. A. Alfandi, M. A. Alrabib
Abstract:
Implementing of a continues flow gas lift system for one vertical oil well producer in Wafa field was investigated under five reservoir pressures and their dependent parameters. Well 03 producers were responded positively to the gas lift system despite of the high well head operating pressures. However, the flowing bottom hole pressures were reduced by a ratio from 6 to 33 % in the case A3 for example, for the design runs conducted under the existing operating conditions for years 2003, 2006 and 2009. This reduction in FBHP has increased the production rate by a ratio from 12 to 22.5%. The results indicated that continues flow gas lift system is a good candidate as an artificial lift system to be considered for the one vertical producer covered by this study. Most significantly, timing for artificial lift by a gas lift system for this field is highly dependent on the amount of gas available at the time of implementation because of the high gas production rate from the top of the reservoir.
Keywords: Gas lift, Wafa field, Ghadamis Basin, Artificial lift, Libya.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3518453 Effects of Geometry of Disk Openers on Seed Slot Properties
Authors: E. Seidi
Abstract:
Offset Double-Disk Opener (DDO) is a popular furrow opener in conservation tillage. It has some limitations such as negative suction to penetrate in the soil, hair pinning and mixing seed and fertilizer in the slot. Because of importance of separation of seed and fertilizer in the slot, by adding two horizontal mini disks to DDO a modified opener was made (MDO) which placed the fertilizer between and under two rows of seed. To consider performance of novel opener an indoor comparison test between DDO and MDO was performed at soil bin. The experiment was conducted with three working speeds (3, 6 and 8 km h-1), two bulk densities of soil (1.1 and 1.4 Mg m-3) and two levels of residues (1 and 2 ton ha-1). The experimental design consisted in a (3×2×2) complete randomized factorial with three replicates for each test. Moisture of seed furrow, separation of seed and fertilizer, hair pinning and resultant forces acting on the openers were used as assessing indexes. There was no significant difference between soil moisture content in slots created by DDO and MDO at 0-4 cm depth, but at 4-8 cm the in the slot created by MDO moisture content was higher about 9%. Horizontal force for both openers increased with increasing speed and soil bulk density. Vertical force for DDO was negative so it needed additional weight for penetrating in the soil, but vertical force for MDO was positive and, which can solve the challenge of penetration in the soil in DDO. In soft soil with heavy residues some trash was pushed by DDO into seed furrow (hair pinning) but at MDO seed were placed at clean groove. Lateral and vertical separation of seed and fertilizer was performed effectively by MDO (4.5 and 5 cm, respectively) while DDO put seed and fertilizer close to each other. Overall, the Modified Offset Double-disks (MDO) had better performance. So by adapting this opener with no-tillage drillers it would possible to have higher yield in conservation tillage where the most appropriate opener is disk type.Keywords: Seed Slot, opener's geometry, physical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823452 Unearthing Decisional Patterns of Air Traffic Control Officers from Simulator Data
Authors: Z. Zakaria, S. W. Lye, S. Endy
Abstract:
Despite the continuous advancements in automated conflict resolution tools, there is still a low rate of adoption of automation from Air Traffic Control Officers (ATCOs). Trust or acceptance in these tools and conformance to the individual ATCO preferences in strategy execution for conflict resolution are two key factors that impact their use. This paper proposes a methodology to unearth and classify ATCO conflict resolution strategies from simulator data of trained and qualified ATCOs. The methodology involves the extraction of ATCO executive control actions and the establishment of a system of strategy resolution classification based on ATCO radar commands and prevailing flight parameters in deconflicting a pair of aircraft. Six main strategies used to handle various categories of conflict were identified and discussed. It was found that ATCOs were about twice more likely to choose only vertical maneuvers in conflict resolution compared to horizontal maneuvers or a combination of both vertical and horizontal maneuvers.
Keywords: Air traffic control strategies, conflict resolution, simulator data, strategy classification system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59451 Numerical Analysis of Laminar Reflux Condensation from Gas-Vapour Mixtures in Vertical Parallel Plate Channels
Authors: Foad Hassaninejadafarahani, Scott Ormiston
Abstract:
Reflux condensation occurs in vertical channels and tubes when there is an upward core flow of vapour (or gas-vapour mixture) and a downward flow of the liquid film. The understanding of this condensation configuration is crucial in the design of reflux condensers, distillation columns, and in loss-of-coolant safety analyses in nuclear power plant steam generators. The unique feature of this flow is the upward flow of the vapour-gas mixture (or pure vapour) that retards the liquid flow via shear at the liquid-mixture interface. The present model solves the full, elliptic governing equations in both the film and the gas-vapour core flow. The computational mesh is non-orthogonal and adapts dynamically the phase interface, thus produces a sharp and accurate interface. Shear forces and heat and mass transfer at the interface are accounted for fundamentally. This modeling is a big step ahead of current capabilities by removing the limitations of previous reflux condensation models which inherently cannot account for the detailed local balances of shear, mass, and heat transfer at the interface. Discretisation has been done based on finite volume method and co-located variable storage scheme. An in-house computer code was developed to implement the numerical solution scheme. Detailed results are presented for laminar reflux condensation from steam-air mixtures flowing in vertical parallel plate channels. The results include velocity and gas mass fraction profiles, as well as axial variations of film thickness.
Keywords: Reflux Condensation, Heat Transfer, Channel, Laminar Flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851450 Study of Mixed Convection in a Vertical Channel Filled with a Reactive Porous Medium in the Absence of Local Thermal Equilibrium
Authors: Hamid Maidat, Khedidja Bouhadef, Djamel Eddine Ameziani, Azzedine Abdedou
Abstract:
This work consists of a numerical simulation of convective heat transfer in a vertical plane channel filled with a heat generating porous medium, in the absence of local thermal equilibrium. The walls are maintained to a constant temperature and the inlet velocity is uniform. The dynamic range is described by the Darcy-Brinkman model and the thermal field by two energy equations model. A dimensionless formulation is developed for performing a parametric study based on certain dimensionless groups such as, the Biot interstitial number, the thermal conductivity ratio and the volumetric heat generation, q '''. The governing equations are solved using the finite volume method, gave rise to a multitude of results concerning in particular the thermal field in the porous channel and the existence or not of the local thermal equilibrium.Keywords: Mixed convection, porous medium, power generation, local thermal non equilibrium model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585449 Structural Behavior of Precast Foamed Concrete Sandwich Panel Subjected to Vertical In-Plane Shear Loading
Authors: Y. H. Mugahed Amran, Raizal S. M. Rashid, Farzad Hejazi, Nor Azizi Safiee, A. A. Abang Ali
Abstract:
Experimental and analytical studies were accomplished to examine the structural behavior of precast foamed concrete sandwich panel (PFCSP) under vertical in-plane shear load. PFCSP full-scale specimens with total number of six were developed with varying heights to study an important parameter slenderness ratio (H/t). The production technique of PFCSP and the procedure of test setup were described. The results obtained from the experimental tests were analysed in the context of in-plane shear strength capacity, load-deflection profile, load-strain relationship, slenderness ratio, shear cracking patterns and mode of failure. Analytical study of finite element analysis was implemented and the theoretical calculations of the ultimate in-plane shear strengths using the adopted ACI318 equation for reinforced concrete wall were determined aimed at predicting the in-plane shear strength of PFCSP. The decrease in slenderness ratio from 24 to 14 showed an increase of 26.51% and 21.91% on the ultimate in-plane shear strength capacity as obtained experimentally and in FEA models, respectively. The experimental test results, FEA models data and theoretical calculation values were compared and provided a significant agreement with high degree of accuracy. Therefore, on the basis of the results obtained, PFCSP wall has the potential use as an alternative to the conventional load-bearing wall system.Keywords: Deflection profiles, foamed concrete, load-strain relationships, precast foamed concrete sandwich panel, slenderness ratio, vertical in-plane shear strength capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2647448 Enhancing Operational Effectiveness in the Norwegian Army through Simulation-Based Training
Abstract:
The Norwegian Military Academy (Army) has initiated a project with the main ambition to explore possible avenues to enhancing operational effectiveness through an increased use of simulation-based training and exercises. Within a cost/benefit framework, we discuss opportunities and limitations of vertical and horizontal integration of the existing tactical training system. Vertical integration implies expanding the existing training system to span the full range of training from tactical level (platoon, company) to command and staff level (battalion, brigade). Horizontal integration means including other domains than army tactics and staff procedures in the training, such as military ethics, foreign languages, leadership and decision making. We discuss each of the integration options with respect to purpose and content of training, "best practice" for organising and conducting simulation-based training, and suggest how to evaluate training procedures and measure learning outcomes. We conclude by giving guidelines towards further explorative work and possible implementation.Keywords: Effectiveness, integration, simulation, training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433447 Observation of Large-Scale Traveling Ionospheric Disturbance over Peninsular Malaysia Using GPS Receivers
Authors: Intan Izafina Idrus, Mardina Abdullah, Alina Marie Hasbi, Asnawi Husin
Abstract:
This paper presents the result of large-scale traveling ionospheric disturbance (LSTID) observation during moderate magnetic storm event on 25 October 2011 with SYM-H ~ -160 nT and Kp ~ 7 over Peninsular Malaysia at equatorial region using vertical total electron content (VTEC) from the Global Positioning System (GPS) observation measurement. The propagation of the LSTID signatures in the TEC measurements over Peninsular Malaysia was also investigated using VTEC map. The LSTID was found to propagate equatorward during this event. The results showed that the LSTID propagated with an average phase velocity of 526.41 m/s and average periods of 140 min. The occurrence of this LSTID was also found to be the subsequent effects of substorm activities in the auroral region.
Keywords: Global Positioning System (GPS), large-scale traveling ionospheric disturbance (LSTID), moderate geomagnetic storm, vertical total electron content (VTEC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093446 The Effect of Stone Column (Nailing and Geogrid) on Stability of Expansive Clay
Authors: Komeil Valipourian, Mohsen Ramezan Shirazi, Orod Zarrin Kafsh
Abstract:
By enhancing the applicatıon of grounds for establishment and due to the lack of appropriate sites, engineers attempt to seek out a new method to reduce the weakness of soils. İn aspect of economic situation, various ways have been used to decrease the weak grounds. Because of the rapid development of infrastructural facilities, spreading the construction operation is an obligation. Furthermore, in various sites with the really bad soil situation, engineers have considered obvious problems. One of the most essential ways for developing the weak soils is stone column. Obviously, the method was introduced in France in 1830 to improve a native soil initially. Stone columns have an expanding range of usage in different rough foundation sites all over the world to increase the bearing capacity, to reduce the whole and differential settlements, to enhance the rate of consolidation, to stabilize slopes stability of embankments and to increase the liquefaction resistance as well. A recent procedure called installing vertical nails along the round stone columns in order to make better the performance of considered columns is offered. Moreover, thanks to the enhancing the nail diameter, number and embedment nail depth, the positive points of vertical circumferential nails increases. Based on the result of this study, load caring capacity will be develop with enhancing the length and the power of reinforcements in vertical encasement stone column (CESC). In this study, the main purpose is comparing two methods of stone columns (installed a nail surrounding the stone columns and using geogrid on clay) for enhancing the bearing capacity, decreasing the whole and various settlements.Keywords: Bearing Capacity, Clay, Geogrid, Nailing, Settlements, Stone Column.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2865445 Measurement of UHF Signal Strength Propagating from Road Surface with Vehicle Obstruction
Authors: C. Thongsopa, P. Sukphongchirakul, A. Intarapanich, P. Jarataku
Abstract:
Radio wave propagation on the road surface is a major problem on wireless sensor network for traffic monitoring. In this paper, we compare receiving signal strength on two scenarios 1) an empty road and 2) a road with a vehicle. We investigate the effect of antenna polarization and antenna height to the receiving signal strength. The transmitting antenna is installed on the road surface. The receiving signal is measured 360 degrees around the transmitting antenna with the radius of 2.5 meters. Measurement results show the receiving signal fluctuation around the transmitting antenna in both scenarios. Receiving signal with vertical polarization antenna results in higher signal strength than horizontal polarization antenna. The optimum antenna elevation is 1 meter for both horizon and vertical polarizations with the vehicle on the road. In the empty road, the receiving signal level is unvarying with the elevation when the elevation is greater than 1.5 meters.Keywords: Wave propagation, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755444 Experimental Demonstration of an Ultra-Low Power Vertical-Cavity Surface-Emitting Laser for Optical Power Generation
Authors: S. Nazhan, Hassan K. Al-Musawi, Khalid A. Humood
Abstract:
This paper reports on an experimental investigation into the influence of current modulation on the properties of a vertical-cavity surface-emitting laser (VCSEL) with a direct square wave modulation. The optical output power response, as a function of the pumping current, modulation frequency, and amplitude, is measured for an 850 nm VCSEL. We demonstrate that modulation frequency and amplitude play important roles in reducing the VCSEL’s power consumption for optical generation. Indeed, even when the biasing current is below the static threshold, the VCSEL emits optical power under the square wave modulation. The power consumed by the device to generate light is significantly reduced to > 50%, which is below the threshold current, in response to both the modulation frequency and amplitude. An operating VCSEL device at low power is very desirable for less thermal effects, which are essential for a high-speed modulation bandwidth.
Keywords: VCSELs, optical power generation, power consumption, square wave modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 566443 Aerodynamic Models for the Analysis of Vertical Axis Wind Turbines (VAWTs)
Authors: T. Brahimi, F. Saeed, I. Paraschivoiu
Abstract:
This paper details the progress made in the development of the different state-of-the-art aerodynamic tools for the analysis of vertical axis wind turbines including the flow simulation around the blade, viscous flow, stochastic wind, and dynamic stall effects. The paper highlights the capabilities of the developed wind turbine aerodynamic codes over the last thirty years which are currently being used in North America and Europe by Sandia Laboratories, FloWind, IMST Marseilles, and Hydro-Quebec among others. The aerodynamic codes developed at Ecole Polytechnique de Montreal, Canada, represent valuable tools for simulating the flow around wind turbines including secondary effects. Comparison of theoretical results with experimental data have shown good agreement. The strength of the aerodynamic codes based on Double-Multiple Stream tube model (DMS) lies in its simplicity, accuracy, and ability to analyze secondary effects that interfere with wind turbine aerodynamic calculations.
Keywords: Aerodynamics, wind turbines, VAWT, CARDAAV, Darrieus, dynamic stall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2600442 An Experimental Study on Development of the Connection System of Concrete Barriers Applicable to Modular Bridge
Authors: Seung-Kyung Kye, Sang-Seung Lee, Dooyong Cho, Sun-Kyu Park
Abstract:
Although many studies on the assembly technology of the bridge construction have dealt mostly with on the pier, girder or the deck of the bridge, studies on the prefabricated barrier have rarely been performed. For understanding structural characteristics and application of the concrete barrier in the modular bridge, which is an assembly of structure members, static loading test was performed. Structural performances as a road barrier of the three methods, conventional cast-in-place(ST), vertical bolt connection(BVC) and horizontal bolt connection(BHC) were evaluated and compared through the analyses of load-displacement curves, strain curves of the steel, concrete strain curves and the visual appearances of crack patterns. The vertical bolt connection(BVC) method demonstrated comparable performance as an alternative to conventional cast-in-place(ST) while providing all the advantages of prefabricated technology. Necessities for the future improvement in nuts enforcement as well as legal standard and regulation are also addressed.Keywords: Modular Bridge, Concrete Barrier, Bolt Connection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715441 Hydrodynamic Modeling of Infinite Reservoir using Finite Element Method
Authors: M. A. Ghorbani, M. Pasbani Khiavi
Abstract:
In this paper, the dam-reservoir interaction is analyzed using a finite element approach. The fluid is assumed to be incompressible, irrotational and inviscid. The assumed boundary conditions are that the interface of the dam and reservoir is vertical and the bottom of reservoir is rigid and horizontal. The governing equation for these boundary conditions is implemented in the developed finite element code considering the horizontal and vertical earthquake components. The weighted residual standard Galerkin finite element technique with 8-node elements is used to discretize the equation that produces a symmetric matrix equation for the damreservoir system. A new boundary condition is proposed for truncating surface of unbounded fluid domain to show the energy dissipation in the reservoir, through radiation in the infinite upstream direction. The Sommerfeld-s and perfect damping boundary conditions are also implemented for a truncated boundary to compare with the proposed far end boundary. The results are compared with an analytical solution to demonstrate the accuracy of the proposed formulation and other truncated boundary conditions in modeling the hydrodynamic response of an infinite reservoir.Keywords: Reservoir, finite element, truncated boundary, hydrodynamic pressure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2306440 Graphene/h-BN Heterostructure Interconnects
Authors: Nikhil Jain, Yang Xu, Bin Yu
Abstract:
The material behavior of graphene, a single layer of carbon lattice, is extremely sensitive to its dielectric environment. We demonstrate improvement in electronic performance of graphene nanowire interconnects with full encapsulation by lattice-matching, chemically inert, 2D layered insulator hexagonal boron nitride (h- BN). A novel layer-based transfer technique is developed to construct the h-BN/MLG/h-BN heterostructures. The encapsulated graphene wires are characterized and compared with that on SiO2 or h-BN substrate without passivating h-BN layer. Significant improvements in maximum current-carrying density, breakdown threshold, and power density in encapsulated graphene wires are observed. These critical improvements are achieved without compromising the carrier transport characteristics in graphene. Furthermore, graphene wires exhibit electrical behavior less insensitive to ambient conditions, as compared with the non-passivated ones. Overall, h-BN/graphene/h- BN heterostructure presents a robust material platform towards the implementation of high-speed carbon-based interconnects.Keywords: Two-dimensional nanosheet, graphene, hexagonal boron nitride, heterostructure, interconnects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695439 Numerical Study of Vertical Wall Jets: Influence of the Prandtl Number
Authors: Amèni Mokni, Hatem Mhiri, Georges Le Palec, Philippe Bournot
Abstract:
This paper is a numerical investigation of a laminar isothermal plane two dimensional wall jet. Special attention has been paid to the effect of the inlet conditions at the nozzle exit on the hydrodynamic and thermal characteristics of the flow. The behaviour of various fluids evolving in both forced and mixed convection regimes near a vertical plate plane is carried out. The system of governing equations is solved with an implicit finite difference scheme. For numerical stability we use a staggered non uniform grid. The obtained results show that the effect of the Prandtl number is significant in the plume region in which the jet flow is governed by buoyant forces. Further for ascending X values, the buoyancy forces become dominating, and a certain agreement between the temperature profiles are observed, which shows that the velocity profile has no longer influence on the wall temperature evolution in this region. Fluids with low Prandtl number warm up more importantly, because for such fluids the effect of heat diffusion is higher.Keywords: Forced convection, Mixed convection, Prandtl number, Wall jet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777438 Unsteady Natural Convection Heat and Mass Transfer of Non-Newtonian Casson Fluid along a Vertical Wavy Surface
Authors: A. Mahdy, Sameh E. Ahmed
Abstract:
Detailed numerical calculations are illustrated in our investigation for unsteady natural convection heat and mass transfer of non-Newtonian Casson fluid along a vertical wavy surface. The surface of the plate is kept at a constant temperature and uniform concentration. To transform the complex wavy surface to a flat plate, a simple coordinate transformation is employed. The resulting partial differential equations are solved using the fully implicit finite difference method with SUR procedure. Flow and heat transfer characteristics are investigated for a wide range of values of the Casson parameter, the dimensionless time parameter, the buoyancy ratio and the amplitude-wavelength parameter. It is found that, the variations of the Casson parameter have significant effects on the fluid motion, heat and mass transfer. Also, the maximum and minimum values of the local Nusselt and Sherwood numbers increase by increase either the Casson parameter or the buoyancy ratio.Keywords: Casson fluid, wavy surface, mass transfer, transient analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918437 Sustainable Architecture Analyses of Walls in Miyaneh Village Houses, Iran
Authors: Zohreh Salavatizadeh, Feridoun NahidiAzar, Sara Salavatizadeh, Seyyed Hossein Salehi, Ahadollah Azami
Abstract:
Even though so many efforts have been taken to renovate and renew the architecture of Miyaneh villages in cold and dry regions of Iran-s northwest, these efforts failed due to lack of significant study and ignoring the past and sustainable history of those villages. Considering the overpopulation of Iran-s villages as well as the importance in preventing their immigration to cities, recognizing village architecture and its construction technology is of great significance to attain sustainable residence in villages. As the only vertical surface in the space, wall possesses its unique special characteristics, and it is also a very important architectural element able to provide the immunity and comfort space for the residents. This article analyzes the characteristics of this vertical element, main types of adobe and stone walls, locally constructed technologies, implementation, the elements forming the walls in the frame of village house typology of Miyaneh, which has the most villages in East Azerbaijan, based on sustainable architectural construction materials of walls.Keywords: Typology, Sustainable Construction, Wall Architecture
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957436 Heat Transfer and Turbulent Fluid Flow over Vertical Double Forward-Facing Step
Authors: Tuqa Abdulrazzaq, Hussein Togun, M. K. A. Ariffin, S. N. Kazi, A. Badarudin, N. M Adam, S. Masuri
Abstract:
Numerical study of heat transfer and fluid flow over vertical double forward facing step were presented. The k-w model with finite volume method was employed to solve continuity, momentum, and energy equations. Different step heights were adopted for range of Reynolds number varied from 10000 to 40000, and range of temperature varied from 310K to 340 K. The straight side of duct is insulated while the side of double forward facing step is heated. The result shows augmentation of heat transfer due to the recirculation region created after and before steps. Effect of step length and Reynolds number observed on increase of local Nusselt number particularly at recirculation regions. Contour of streamline velocity is plotted to show recirculation regions after and before steps. Numerical simulation in this paper done by used ANSYS FLUENT 14.
Keywords: Turbulent flow, Double forward, Heat transfer, Separation flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2694435 Hybrid Recovery of Copper and Silver from PV Ribbon and Ag Finger of EOL Solar Panels
Authors: T. Patcharawit, C. Kansomket, N. Wongnaree, W. Kritsrikan, T. Yingnakorn, S. Khumkoa
Abstract:
Recovery of pure copper and silver from end-of-life photovoltaic (PV) panels was investigated in this paper using an effective hybrid pyro-hydrometallurgical process. In the first step of waste treatment, solar panel waste was first dismantled to obtain a PV sheet to be cut and calcined at 500 °C, to separate out PV ribbon from glass cullet, ash, and volatile while the silicon wafer containing silver finger was collected for recovery. In the second step of metal recovery, copper recovery from PV ribbon was via 1-3 M HCl leaching with SnCl₂ and H₂O₂ additions in order to remove the tin-lead coating on the ribbon. The leached copper band was cleaned and subsequently melted as an anode for the next step of electrorefining. Stainless steel was set as the cathode with CuSO₄ as an electrolyte, and at a potential of 0.2 V, high purity copper of 99.93% was obtained at 96.11% recovery after 24 hours. For silver recovery, the silicon wafer containing silver finger was leached using HNO₃ at 1-4 M in an ultrasonic bath. In the next step of precipitation, silver chloride was then obtained and subsequently reduced by sucrose and NaOH to give silver powder prior to oxy-acetylene melting to finally obtain pure silver metal. The integrated recycling process is considered to be economical, providing effective recovery of high purity metals such as copper and silver while other materials such as aluminum, copper wire, glass cullet can also be recovered to be reused commercially. Compounds such as PbCl₂ and SnO₂ obtained can also be recovered to enter the market.
Keywords: Electrorefining, leaching, calcination, PV ribbon, silver finger, solar panel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 486434 Masonry CSEB Building Models under Shaketable Testing-An Experimental Study
Authors: Lakshmi Keshav, V. G. Srisanthi
Abstract:
In this experimental investigation shake table tests were conducted on two reduced models that represent normal single room building constructed by Compressed Stabilized Earth Block (CSEB) from locally available soil. One model was constructed with earthquake resisting features (EQRF) having sill band, lintel band and vertical bands to control the building vibration and another one was without Earthquake Resisting Features. To examine the seismic capacity of the models particularly when it is subjected to long-period ground motion by large amplitude by many cycles of repeated loading, the test specimen was shaken repeatedly until the failure. The test results from Hi-end Data Acquisition system show that model with EQRF behave better than without EQRF. This modified masonry model with new material combined with new bands is used to improve the behavior of masonry building.Keywords: Earth Quake Resisting Features, Compressed Stabilized Earth Blocks, Masonry structures, Shake table testing, Horizontal and vertical bands.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2735433 Development of Nondestructive Imaging Analysis Method Using Muonic X-Ray with a Double-Sided Silicon Strip Detector
Authors: I-Huan Chiu, Kazuhiko Ninomiya, Shin’ichiro Takeda, Meito Kajino, Miho Katsuragawa, Shunsaku Nagasawa, Atsushi Shinohara, Tadayuki Takahashi, Ryota Tomaru, Shin Watanabe, Goro Yabu
Abstract:
In recent years, a nondestructive elemental analysis method based on muonic X-ray measurements has been developed and applied for various samples. Muonic X-rays are emitted after the formation of a muonic atom, which occurs when a negatively charged muon is captured in a muon atomic orbit around the nucleus. Because muonic X-rays have a higher energy than electronic X-rays due to the muon mass, they can be measured without being absorbed by a material. Thus, estimating the two-dimensional (2D) elemental distribution of a sample became possible using an X-ray imaging detector. In this work, we report a non-destructive imaging experiment using muonic X-rays at Japan Proton Accelerator Research Complex. The irradiated target consisted of a polypropylene material, and a double-sided silicon strip detector, which was developed as an imaging detector for astronomical obervation, was employed. A peak corresponding to muonic X-rays from the carbon atoms in the target was clearly observed in the energy spectrum at an energy of 14 keV, and 2D visualizations were successfully reconstructed to reveal the projection image from the target. This result demonstrates the potential of the nondestructive elemental imaging method that is based on muonic X-ray measurement. To obtain a higher position resolution for imaging a smaller target, a new detector system will be developed to improve the statistical analysis in further research.
Keywords: DSSD, muon, muonic X-ray, imaging, non-destructive analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1259