The Effect of Blockage Factor on Savonius Hydrokinetic Turbine Performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
The Effect of Blockage Factor on Savonius Hydrokinetic Turbine Performance

Authors: Thochi Seb Rengma, Mahendra Kumar Gupta, P. M. V. Subbarao

Abstract:

Hydrokinetic turbines can be used to produce power in inaccessible villages located near rivers. The hydrokinetic turbine uses the kinetic energy of the water and maybe put it directly into the natural flow of water without dams. For off-grid power production, the Savonius-type vertical axis turbine is the easiest to design and manufacture. This proposal uses three-dimensional Computational Fluid Dynamics (CFD) simulations to measure the considerable interaction and complexity of turbine blades. Savonius hydrokinetic turbine (SHKT) performance is affected by a blockage in the river, canals, and waterways. Putting a large object in a water channel causes water obstruction and raises local free stream velocity. The blockage correction factor or velocity increment measures the impact of velocity on the performance. SHKT performance is evaluated by comparing power coefficient (Cp) with tip-speed ratio (TSR) at various blockage ratios. The maximum Cp was obtained at a TSR of 1.1 with a blockage ratio of 45%, whereas TSR of 0.8 yielded the highest Cp without blockage. The greatest Cp of 0.29 was obtained with a 45% blockage ratio compared to a Cp max of 0.18 without a blockage.

Keywords: Savonius hydrokinetic turbine, blockage ratio, vertical axis turbine, power coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172

References:


[1] J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes: Fourth Edition. 2013.
[2] M. Ghasemian, Z. N. Ashrafi, and A. Sedaghat, “A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines,” Energy Convers. Manag., vol. 149, pp. 87–100, 2017, doi: 10.1016/j.enconman.2017.07.016.
[3] O. Paish, “Small hydro power: Technology and current status,” Renew. Sustain. Energy Rev., vol. 6, no. 6, pp. 537–556, 2002, doi: 10.1016/S1364-0321(02)00006-0.
[4] M. J. Khan, G. Bhuyan, M. T. Iqbal, and J. E. Quaicoe, “Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review,” Appl. Energy, vol. 86, no. 10, pp. 1823–1835, 2009, doi: 10.1016/j.apenergy.2009.02.017.
[5] A. De Marco, D. P. Coiro, D. Cucco, and F. Nicolosi, “A numerical study on a vertical-axis wind turbine with inclined arms,” Int. J. Aerosp. Eng., vol. 2014, 2014, doi: 10.1155/2014/180498.
[6] M. K. Gupta and P. M. V. Subbarao, “Development of a semi-analytical model to select a suitable airfoil section for blades of horizontal axis hydrokinetic turbine,” Energy Reports, vol. 6, no. February, pp. 32–37, 2020, doi: 10.1016/j.egyr.2019.08.014.
[7] M. Badrul Salleh, N. M. Kamaruddin, and Z. Mohamed-Kassim, “Savonius hydrokinetic turbines for a sustainable river-based energy extraction: A review of the technology and potential applications in Malaysia,” Sustain. Energy Technol. Assessments, vol. 36, no. July, p. 100554, 2019, doi: 10.1016/j.seta.2019.100554.
[8] T. S. Rengma, A. R. Sengupta, M. Basumatary, A. Biswas, and D. Bhanja, “Performance analysis of a two bladed Savonius water turbine cluster for perennial river-stream application at low water speeds,” J. Brazilian Soc. Mech. Sci. Eng., vol. 43, no. 5, 2021, doi: 10.1007/s40430-021-02982-x.
[9] S. Savonius, “The S-rotor and its applications,” Mech. Eng., vol. 53, no. 5, pp. 333-338., 1931.
[10] M. A. Kamoji, S. B. Kedare, and S. V. Prabhu, “Experimental investigations on single stage, two stage and three stage conventional Savonius rotor,” Int. J. energy Res., vol. 32, no. 2008, pp. 877–895, 2008, doi: 10.1002/er.
[11] T. S. Rengma and P. M. V. Subbarao, “Comparative Analysis of Savonius Type Ultra-Micro Hydrokinetic Turbine of Experimental and Computational Investigation,” p. 380, 2022, Online. Available: 10.1007/978-981-16-3497-0_19.
[12] S. Bhuyan and A. Biswas, “Investigations on self-starting and performance characteristics of simple H and hybrid H-Savonius vertical axis wind rotors,” Energy Convers. Manag., vol. 87, pp. 859–867, 2014, doi: 10.1016/j.enconman.2014.07.056.
[13] R. Gupta, A. Biswas, and K. K. Sharma, “Comparative study of a three-bucket Savonius rotor with a combined three-bucket Savonius-three-bladed Darrieus rotor,” Renew. Energy, vol. 33, no. 9, pp. 1974–1981, 2008, doi: 10.1016/j.renene.2007.12.008.
[14] A. Bianchini, F. Balduzzi, P. Bachant, G. Ferrara, and L. Ferrari, “Effectiveness of two-dimensional CFD simulations for Darrieus VAWTs: a combined numerical and experimental assessment,” Energy Convers. Manag., vol. 136, pp. 318–328, 2017, doi: 10.1016/j.enconman.2017.01.026.
[15] N. H. Abu-Hamdeh and K. H. Almitani, “Construction and numerical analysis of a collapsible vertical axis wind turbine,” Energy Convers. Manag., vol. 151, no. June, pp. 400–413, 2017, doi: 10.1016/j.enconman.2017.09.015.
[16] K. Golecha, T. I. Eldho, and S. V. Prabhu, “Study on the interaction between two hydrokinetic Savonius turbines,” Int. J. Rotating Mach., vol. 2012, 2012, doi: 10.1155/2012/581658.
[17] L. Chen, J. Chen, H. Xu, H. Yang, C. Ye, and D. Liu, “Wind tunnel investigation on the two- and three-blade Savonius rotor with central shaft at different gap ratio,” J. Renew. Sustain. Energy, vol. 8, no. 1, 2016, doi: 10.1063/1.4940434.
[18] T. S. Rengma and P. M. V. Subbarao, “Optimization of semicircular blade profile of Savonius hydrokinetic turbine using artificial neural network,” Renew. Energy, 2022, Online. Available: https://doi.org/10.1016/j.renene.2022.10.021.
[19] B. Jones, Elements of aerodynamics. New York: J. Wiley, 1889.
[20] T. Hayashi, Y. Li, and Y. Hara, “Wind Tunnel Tests on a Different Phase Three-Stage,” vol. 48, no. 1, pp. 9–16, 2005.
[21] M. H. Mohamed, G. Janiga, E. Pap, and D. Thévenin, “Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade,” Energy Convers. Manag., vol. 52, no. 1, pp. 236–242, 2011, doi: 10.1016/j.enconman.2010.06.070.
[22] M. R. Castelli and E. Benini, “Effect of blade inclination angle on a Darrieus wind turbine,” J. Turbomach., vol. 134, no. 3, pp. 1–10, 2011, doi: 10.1115/1.4003212.
[23] Y. Chen and Y. Lian, “Numerical investigation of vortex dynamics in an H-rotor vertical axis wind turbine,” Eng. Appl. Comput. Fluid Mech., vol. 9, no. 1, pp. 21–32, 2015, doi: 10.1080/19942060.2015.1004790.
[24] K. Morshed, M. Rahman, G. Molina, and M. Ahmed, “Wind tunnel testing and numerical simulation on aerodynamic performance of a three-bladed Savonius wind turbine,” Int. J. Energy Environ. Eng., vol. 4, no. 1, p. 18, 2013, doi: 10.1186/2251-6832-4-18.
[25] R. E. Sheldahl, B. F. Blackwell, and L. V. Feltz, “Wind Tunnel Performance Data for Two- and Three-Bucket Savonius Rotors.,” J Energy, vol. 2, no. 3, pp. 160–164, 1978, doi: 10.2514/3.47966.
[26] A. J. Alexander and B. P. Holownia, “Wind Tunnel Tests on a Savonius Rotor,” J. Ind. Aerodyn., vol. 3, no. 4, pp. 343–351, 1978, doi: 10.1016/0167-6105(78)90037-5.
[27] V. J. Modi and M. S. U. K. Fernando, “On the performance of the savonius wind turbine,” J. Sol. Energy Eng. Trans. ASME, vol. 111, no. 1, pp. 71–81, 1989, doi: 10.1115/1.3268289.
[28] V. J. Modi, N. J. Roth, and M. S. U. K. Fernando, “Optimum-configuration studies and prototype design of a wind-energy-operated irrigation system,” J. Wind Eng. Ind. Aerodyn., vol. 16, no. 1, pp. 85–96, 1984, doi: 10.1016/0167-6105(84)90050-3.
[29] K. Takeda and M. Kato, “Wind tunnel blockage effects on drag coefficient and wind-induced vibration,” J. Wind Eng. Ind. Aerodyn., vol. 41–44, pp. 897–908, 1992.
[30] H. Jeong, S. Lee, and S. D. Kwon, “Blockage corrections for wind tunnel tests conducted on a Darrieus wind turbine,” J. Wind Eng. Ind. Aerodyn., vol. 179, no. June, pp. 229–239, 2018, doi: 10.1016/j.jweia.2018.06.002.