Graphene/h-BN Heterostructure Interconnects
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Graphene/h-BN Heterostructure Interconnects

Authors: Nikhil Jain, Yang Xu, Bin Yu

Abstract:

The material behavior of graphene, a single layer of carbon lattice, is extremely sensitive to its dielectric environment. We demonstrate improvement in electronic performance of graphene nanowire interconnects with full encapsulation by lattice-matching, chemically inert, 2D layered insulator hexagonal boron nitride (h- BN). A novel layer-based transfer technique is developed to construct the h-BN/MLG/h-BN heterostructures. The encapsulated graphene wires are characterized and compared with that on SiO2 or h-BN substrate without passivating h-BN layer. Significant improvements in maximum current-carrying density, breakdown threshold, and power density in encapsulated graphene wires are observed. These critical improvements are achieved without compromising the carrier transport characteristics in graphene. Furthermore, graphene wires exhibit electrical behavior less insensitive to ambient conditions, as compared with the non-passivated ones. Overall, h-BN/graphene/h- BN heterostructure presents a robust material platform towards the implementation of high-speed carbon-based interconnects.

Keywords: Two-dimensional nanosheet, graphene, hexagonal boron nitride, heterostructure, interconnects.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1112200

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702

References:


[1] W. Steinhogl, G. Schindler, G. Steinlesberger, M. Traving, and M, Engelhardt, “Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller,” Journal of Applied Physics, 97, 023706–023706–7, 2005.
[2] G. Steinlesberger, M. Engelhardt, G. Schindler, W. Steinhögl, A. Von Glasow, K. Mosig, and E. Bertagnolli, “Electrical assessment of copper damascene interconnects down to sub-50 nm feature sizes Microelectronic Engineering, 64, 409–16, 2002.
[3] J. A. Davis, R. Venkatesan A. Kaloyeros, M. Beylansky, S. J. Souri, K. Banerjee, K. C. Saraswat, A. Rahman, R. Reif, and J. D. Meindl, “Interconnect limits on gigascale integration (GSI) in the 21st century,” Proceedings of the IEEE, 89, 305–24, 2001.
[4] P. C. Wang, and R. G. Filippi, “Electromigration threshold in copper interconnects,” Applied Physics Letters, 78, 3598–600, 2001.
[5] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, 6, 183–91, 2007.
[6] J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nature Nanotechnology, 3, 206–9, 2008.
[7] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics, Nature Nanotechnology, 5, 722–6, 2010.
[8] N. Jain, T. Bansal, C. Durcan, and B. Yu, “Graphene-Based Interconnects on Hexagonal Boron Nitride Substrate,” IEEE Electron Device Letters, 33, 925–7, 2012.
[9] X. Zhong , R. G. Amorim, R. H. Scheicher, R. Pandey, and S. P. Karna, “Electronic structure and quantum transport properties of trilayers formed from graphene and boron nitride,” Nano scale, 4, 5490–8, 2012.
[10] A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A. Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and A. K. Geim, “Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature,” Nano Letter, 11, 2396– 9, 2011.
[11] H. Wang, T. Taychatanapat, A. Hsu, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and T. Palacios, “BN/Graphene/BN Transistors for RF Applications,” IEEE Electron Device Letters, 32 1209–11, 2011.