Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31108
Experimental Demonstration of an Ultra-Low Power Vertical-Cavity Surface-Emitting Laser for Optical Power Generation

Authors: S. Nazhan, Hassan K. Al-Musawi, Khalid A. Humood


This paper reports on an experimental investigation into the influence of current modulation on the properties of a vertical-cavity surface-emitting laser (VCSEL) with a direct square wave modulation. The optical output power response, as a function of the pumping current, modulation frequency, and amplitude, is measured for an 850 nm VCSEL. We demonstrate that modulation frequency and amplitude play important roles in reducing the VCSEL’s power consumption for optical generation. Indeed, even when the biasing current is below the static threshold, the VCSEL emits optical power under the square wave modulation. The power consumed by the device to generate light is significantly reduced to > 50%, which is below the threshold current, in response to both the modulation frequency and amplitude. An operating VCSEL device at low power is very desirable for less thermal effects, which are essential for a high-speed modulation bandwidth.

Keywords: Power Consumption, VCSELs, optical power generation, square wave modulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 90


[1] J. W. Shi, W. C. Weng, F. M. Kuo, Y.-J. Yang, S. Pinches, M. Geen, et al., "High-Performance Zn-Diffusion 850-nm Vertical-Cavity Surface-Emitting Lasers With Strained InAlGaAs Multiple Quantum Wells," Photonics Journal, IEEE, vol. 2, pp. 960-966, 2010.
[2] J.-W. Shi, Z.-R. Wei, K.-L. Chi, J.-W. Jiang, J.-M. Wun, I. Lu, et al., "Single-Mode, High-Speed, and High-Power Vertical-Cavity Surface-Emitting Lasers at 850 nm for Short to Medium Reach (2 km) Optical Interconnects," Journal of Lightwave Technology, vol. 31, pp. 4037-4044, 2013.
[3] I. Kenichi, "Vertical-cavity surface-emitting laser: its conception and evolution," Jpn. J. Appl. Phys, vol. 47, pp. 1-10, 2008.
[4] P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, et al., "High-Speed Oxide Confined 850-nm VCSELs Operating Error-Free at 40 Gb/s up to 85 ºC," Photonics Technology Letters, IEEE, vol. 25, pp. 768-771, 2013.
[5] P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, "High-speed 850 nm VCSELs operating error free up to 57 Gbit/s," Electronics Letters, vol. 49, pp. 1021-1023, 2013.
[6] P. Wolf, P. Moser, G. Larisch, H. Li, J. Lott, and D. Bimberg, "Energy efficient 40 Gbit/s transmission with 850 nm VCSELs at 108 fJ/bit dissipated heat," Electronics Letters, vol. 49, pp. 666-667, 2013.
[7] N. Li, K. Han, W. Spratt, S. Bedell, J. Ott, M. Hopstaken, et al., "Ultra-low-power sub-photon-voltage high-efficiency light-emitting diodes," Nature Photonics, vol. 13, pp. 588-592, 2019/09/01 2019.
[8] R. Michalzik, VCSELs : Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
[9] J.-W. Shi, W.-C. Weng, F.-M. Kuo, J.-I. Chyi, S. Pinches, M. Geen, et al., "Oxide-relief vertical-cavity surface-emitting lasers with extremely high data-rate/power-dissipation ratios," in Optical Fiber Communication Conference, 2011.
[10] P. Dapkus and M. MacDougal, "Ultralow threshold vertical cavity surface emitting lasers," IEEE LEOS Newsletter, vol. 9, pp. 3-5, 1995.
[11] K. Iga, "Surface-emitting laser-its birth and generation of new optoelectronics field," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 6, pp. 1201-1215, 2000.
[12] J. Rudolph, D. Hägele, H. Gibbs, G. Khitrova, and M. Oestreich, "Laser threshold reduction in a spintronic device," Applied physics letters, vol. 82, pp. 4516-4518, 2003.
[13] K. Choquette, H. Hou, K. Lear, H. Chui, K. Geib, A. Mar, et al., "Self-pulsing oxide-confined vertical-cavity lasers with ultralow operating current," Electronics Letters, vol. 32, pp. 459-460, 1996.
[14] S. Iezekiel, Microwave photonics: devices and applications vol. 3: John Wiley & Sons, 2009.
[15] S.-Y. Lin, Y.-C. Su, Y.-C. Li, H.-L. Wang, G.-C. Lin, S.-M. Chen, et al., "10-Gbit/s direct modulation of a TO-56-can packed 600-μm long laser diode with 2% front-facet reflectance," Optics express, vol. 21, pp. 25197-25209, 2013.
[16] H.-F. Liu and W. F. Ngai, "Nonlinear dynamics of a directly modulated 1.55 μm InGaAsP distributed feedback semiconductor laser," Quantum Electronics, IEEE Journal of, vol. 29, pp. 1668-1675, 1993.
[17] K. Panajotov, M. Sciamanna, I. Gatare, M. Arteaga, and H. Thienpont, "Nonlinear dynamics of vertical-cavity surface-emitting lasers," Advances in Optical Technologies, vol. 2011, pp. 1-16, 2011.
[18] A. Valle, M. Sciamanna, and K. Panajotov, "Irregular pulsating polarization dynamics in gain-switched vertical-cavity surface-emitting lasers," IEEE Journal of Quantum Electronics, vol. 44, pp. 136-143, 2008.
[19] S. Li, "UWB Radio-over-Fiber System Using Direct Modulated VCSEL," 2007.
[20] J. Piprek, K. Takiguchi, A. Black, P. Abraham, A. Keating, V. Kaman, et al., "Analog modulation of 1.55 m vertical cavity lasers," in SPIE Proc, 1999, pp. 119-129.
[21] G. Shtengel, H. Temkin, P. Brusenbach, T. Uchida, M. Kim, C. Parsons, et al., "High-speed vertical-cavity surface emitting laser," Photonics Technology Letters, IEEE, vol. 5, pp. 1359-1362, 1993.
[22] J. T. Mbé, K. Takougang, and P. Woafo, "Chaos and pulse packages in current-modulated VCSELs," Physica Scripta, vol. 81, p. 035002, 2010.