Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30011
Aerodynamic Models for the Analysis of Vertical Axis Wind Turbines (VAWTs)

Authors: T. Brahimi, F. Saeed, I. Paraschivoiu


This paper details the progress made in the development of the different state-of-the-art aerodynamic tools for the analysis of vertical axis wind turbines including the flow simulation around the blade, viscous flow, stochastic wind, and dynamic stall effects. The paper highlights the capabilities of the developed wind turbine aerodynamic codes over the last thirty years which are currently being used in North America and Europe by Sandia Laboratories, FloWind, IMST Marseilles, and Hydro-Quebec among others. The aerodynamic codes developed at Ecole Polytechnique de Montreal, Canada, represent valuable tools for simulating the flow around wind turbines including secondary effects. Comparison of theoretical results with experimental data have shown good agreement. The strength of the aerodynamic codes based on Double-Multiple Stream tube model (DMS) lies in its simplicity, accuracy, and ability to analyze secondary effects that interfere with wind turbine aerodynamic calculations.

Keywords: Aerodynamics, wind turbines, VAWT, CARDAAV, Darrieus, dynamic stall.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF


[1] Paraschivoiu, I., Wind Turbine Design with Emphasis on the Darrieus Concept, Polytechnique International Press, Ecole Polytechnique de Montréal, Montréal, Canada, June 2002.
[2] Tchon, K.F., "Simulation numérique du décrochage dynamique sur un profil d'aile en mouvement de rotation Darrieus," Thèse de doctorat, Dépt. de Génie Mécanique, École Polytechnique de Montréal, 1993.
[3] Rajagopalan, R.G., "Viscous Flow Field Analysis of a Vertical-Axis Wind Turbine," Proceedings of the 21st Intersociety Energy Conversion Engineering Conference
[4] Canadian Wind Energy Association (CanWEA), “Wind Vision 2025, Powering Canada’s Future”, retrieved September 2015 from
[5] Global Wind Energy Council, “Global Wind Report”, Annual Market Update, GWEC, 2014
[6] Canadian Wind Energy Association, (CanWEA), “Installed Capacity”, retrieved September 2015 from
[7] American Wind Energy Association, AWEA, “Wind Energy Facts at a Glance”, retrieved September 2015 from
[8] European Wind Energy, (EWEA), “Aiming High, Rewarding Ambition in Wind Energy”, retrieved December 2015 from
[9] Manwell, J.F., McGowan, J.G., Rogers, A. L, “Wind Energy Explained, Theory, Design and Application”, John Wiley and Sons, 2009.
[10] Paraschivoiu, I., "Aerodynamic Loads and Performance of the Darrieus Rotor," J. of Energy, Vol., No., pp. 406-412, 1981.
[11] Paraschivoiu, I., and Delclaux, F., “Double- Multiple Streamtube Model with Recent Improvements,” Journal of Energy, Vol. 7, No. 3, pp. 250– 255, May-June 1983.
[12] IONPARA Inc., “Wind Turbines & Aeronautics Consulting”, retrieved September 201 from
[13] Paraschivoiu, I., Masson, C., Rajagopalan, R.G., "Predictions and Experiments of the VAWT Viscous Flow Field," AIAA Paper 87-1429.
[14] Allet, A., Paraschivoiu, I., "Numerical Simulation of Three-Dimensional Flow Fields on Vertical-Axis Wind Turbines", The 4r International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, (ISROMAC-4), Hawaii, pp. 214-223, 1992.
[15] Allet, A., "Modele tridimensionnel pour le calcul arodynamique des turbines axe vertical", PhD Thesis, Mechanical Eng. Department, Ecole Polytechnique de Montreal, 1993.
[16] Gormont, R.E., “A Mathematical Model of Unsteady Aerodynamics and Radial Flow for Application to Helicopter Rotors”, Technical Report 72-67; NTIS: Springfield, VA, USA, 1973.
[17] Strickland, J.H. Webster, B.T. and Nguyen, T., “A Vortex Model of the Darrieus Turbine: An Analytical and Experimental Study”, SAND79-7058, Sandia National Laboratories, Albuquerque, 1980.
[18] Paraschivoiu, I. “Double-Multiple Stream Tube Model for Studying Vertical-Axis Wind Turbines”, Journal of Propulsion and Power, Vol. 4, pp. 370-378, 1988.
[19] Berg, D.E. An Improved Double-Multiple Stream Tube Model for the Darrieus-Type Vertical Axis Wind Turbine, Sixth Biennal Wind Energy Conference and Workshop, pp. 231-233, 1983.
[20] Beddoes, T.S., and Leishman, J.G., “A Semi-Empirical Model for Dynamic Stall”, Journal of the American Helicopter Society, Vol. 34, no. 3, pp. 3-17, 1989.
[21] Brochier, G.; Fraunié, P.; Béguier, C.; Paraschivoiu, I. Water Channel Experiments of Dynamic Stall on Darrieus Wind Turbine Blades. AIAA Journal of Propulsion and Power 1986, Vol-2, pp. 445–449.
[22] Tchon, K.F., "Simulation numérique du décrochage dynamique sur un profil d'aile en mouvement de rotation Darrieus," Thèse de doctorat, Dépt. de Génie Mécanique, École Polytechnique de Montréal, 1993.
[23] Widell, H., “Genial 1.1, a Friendly Function Optimizer based on Evolutionary Algorithms,” 1997.
[24] Masson, C. Leclerc, C., and Paraschivoiu, I., “Appropriate Dynamic-Stall Models for Performance Predictions of VAWTs with NLF Blades”, International Journal of Rotating Machinery 1998, Vol. 4, No. 2, pp. 129-139.
[25] Norbert V. Dy, Farooq Saeed and Ion Paraschivoiu, “Dynamic Response Analysis of Darrieus-Type Vertical Axis Water Turbines”, Proceedings of the Twenty-third International Offshore and Polar Engineering Anchorage, Alaska, June 30–July 5, 2013. The International Society of Offshore and Polar Engineers (ISOPE).
[26] Strickland, J.H., Webster, B.T., and Nguyen, T., "A Vortex Model of the Darrieus Turbine: An Analytical and Experimental Study," Sandia National Laboratories, Report, SAND79-7058, 1980.
[27] Akins, R. E., "Measurements of Surface Pressure on an Operating Vertical Axis Wind Turbine", Sandia National Laboratories SAND89- 7051, Albuquerque, NM, 1989.
[28] J.-A. Bombardier Aeronautical Chair, Paraschivoiu, I., Ecole Polytechnique de Montreal, retrieved September 2015 from