Search results for: elastic dynamic response
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3495

Search results for: elastic dynamic response

1935 An Automated Test Setup for the Characterization of Antenna in CATR

Authors: Faisal Amin, Abdul Mueed, Xu Jiadong

Abstract:

This paper describes the development of a fully automated measurement software for antenna radiation pattern measurements in a Compact Antenna Test Range (CATR). The CATR has a frequency range from 2-40 GHz and the measurement hardware includes a Network Analyzer for transmitting and Receiving the microwave signal and a Positioner controller to control the motion of the Styrofoam column. The measurement process includes Calibration of CATR with a Standard Gain Horn (SGH) antenna followed by Gain versus angle measurement of the Antenna under test (AUT). The software is designed to control a variety of microwave transmitter / receiver and two axis Positioner controllers through the standard General Purpose interface bus (GPIB) interface. Addition of new Network Analyzers is supported through a slight modification of hardware control module. Time-domain gating is implemented to remove the unwanted signals and get the isolated response of AUT. The gated response of the AUT is compared with the calibration data in the frequency domain to obtain the desired results. The data acquisition and processing is implemented in Agilent VEE and Matlab. A variety of experimental measurements with SGH antennas were performed to validate the accuracy of software. A comparison of results with existing commercial softwares is presented and the measured results are found to be within .2 dBm.

Keywords: Antenna measurement, calibration, time-domain gating, VNA, Positioner controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
1934 Swarm Intelligence based Optimal Linear Phase FIR High Pass Filter Design using Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach

Authors: Sangeeta Mandal, Rajib Kar, Durbadal Mandal, Sakti Prasad Ghoshal

Abstract:

In this paper, an optimal design of linear phase digital high pass finite impulse response (FIR) filter using Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach (PSO-CFIWA) has been presented. In the design process, the filter length, pass band and stop band frequencies, feasible pass band and stop band ripple sizes are specified. FIR filter design is a multi-modal optimization problem. The conventional gradient based optimization techniques are not efficient for digital filter design. Given the filter specifications to be realized, the PSO-CFIWA algorithm generates a set of optimal filter coefficients and tries to meet the ideal frequency response characteristic. In this paper, for the given problem, the designs of the optimal FIR high pass filters of different orders have been performed. The simulation results have been compared to those obtained by the well accepted algorithms such as Parks and McClellan algorithm (PM), genetic algorithm (GA). The results justify that the proposed optimal filter design approach using PSOCFIWA outperforms PM and GA, not only in the accuracy of the designed filter but also in the convergence speed and solution quality.

Keywords: FIR Filter; PSO-CFIWA; PSO; Parks and McClellanAlgorithm, Evolutionary Optimization Technique; MagnitudeResponse; Convergence; High Pass Filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
1933 Analysis of a Lignocellulose Degrading Microbial Consortium to Enhance the Anaerobic Digestion of Rice Straws

Authors: Supanun Kangrang, Kraipat Cheenkachorn, Kittiphong Rattanaporn, Malinee Sriariyanun

Abstract:

Rice straw is lignocellulosic biomass which can be utilized as substrate for the biogas production. However, due to the property and composition of rice straw, it is difficult to be degraded by hydrolysis enzymes. One of the pretreatment methods that modify such properties of lignocellulosic biomass is the application of lignocellulose-degrading microbial consortia. The aim of this study is to investigate the effect of microbial consortia to enhance biogas production. To select the high efficient consortium, cellulase enzymes were extracted and their activities were analyzed. The results suggested that microbial consortium culture obtained from cattle manure is the best candidate compared to decomposed wood and horse manure. A microbial consortium isolated from cattle manure was then mixed with anaerobic sludge and used as inoculum for biogas production. The optimal conditions for biogas production were investigated using response surface methodology (RSM). The tested parameters were the ratio of amount of microbial consortium isolated and amount of anaerobic sludge (MI:AS), substrate to inoculum ratio (S:I) and temperature. Here, the value of the regression coefficient R2 = 0.7661 could be explained by the model which is high to advocate the significance of the model. The highest cumulative biogas yield was 104.6 ml/g-rice straw at optimum ratio of MI:AS, ratio of S:I, and temperature of 2.5:1, 15:1 and 44°C respectively.

Keywords: Lignocellulolytic biomass, microbial consortium, cellulase, biogas, Response Surface Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3326
1932 Physical-Mechanical Characteristics of Monocrystalline Si1-xGex (x≤0,02) Solid Solutions

Authors: I. Kurashvili, A. Sichinava, G. Bokuchava, G. Darsavelidze

Abstract:

Si-Ge solid solutions (bulk poly- and mono-crystalline samples, thin films) are characterized by high perspectives for application in semiconductor devices, in particular, optoelectronics and microelectronics. From this point of view, complex studying of structural state of the defects and structural-sensitive physical properties of Si-Ge solid solutions depending on the contents of Si and Ge components is very important. Present work deals with the investigations of microstructure, microhardness, internal friction and shear modulus of Si1-xGex(x≤0,02) bulk monocrystals conducted at room temperature. Si-Ge bulk crystals were obtained by Czochralski method in [111] crystallographic direction. Investigated monocrystalline Si-Ge samples are characterized by p-type conductivity and carriers’ concentration 5.1014-1.1015cm-3. Microhardness was studied on Dynamic Ultra Micro hardness Tester DUH-201S with Berkovich indenter. Investigate samples are characterized with 0,5x0,5x(10-15)mm3 sizes, oriented along [111] direction at torsion oscillations ≈1Hz, multistage changing of internal friction and shear modulus has been revealed in an interval of strain amplitude of 10-5-5.10-3. Critical values of strain amplitude have been determined at which hysteretic changes of inelastic characteristics and microplasticity are observed. The critical strain amplitude and elasticity limit values are also determined. Dynamic mechanical characteristics decreasing trend is shown with increasing Ge content in Si-Ge solid solutions. Observed changes are discussed from the point of view of interaction of various dislocations with point defects and their complexes in a real structure of Si-Ge solid solutions.

Keywords: Internal friction, microhardness, relaxation processes, shear modulus, Si-Ge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
1931 Analysis of Vortex-Induced Vibration Characteristics for a Three-Dimensional Flexible Tube

Authors: Zhipeng Feng, Huanhuan Qi, Pingchuan Shen, Fenggang Zang, Yixiong Zhang

Abstract:

Numerical simulations of vortex-induced vibration of a three-dimensional flexible tube under uniform turbulent flow are calculated when Reynolds number is 1.35×104. In order to achieve the vortex-induced vibration, the three-dimensional unsteady, viscous, incompressible Navier-Stokes equation and LES turbulence model are solved with the finite volume approach, the tube is discretized according to the finite element theory, and its dynamic equilibrium equations are solved by the Newmark method. The fluid-tube interaction is realized by utilizing the diffusion-based smooth dynamic mesh method. Considering the vortex-induced vibration system, the variety trends of lift coefficient, drag coefficient, displacement, vertex shedding frequency, phase difference angle of tube are analyzed under different frequency ratios. The nonlinear phenomena of locked-in, phase-switch are captured successfully. Meanwhile, the limit cycle and bifurcation of lift coefficient and displacement are analyzed by using trajectory, phase portrait, and Poincaré sections. The results reveal that: when drag coefficient reaches its minimum value, the transverse amplitude reaches its maximum, and the “lock-in” begins simultaneously. In the range of lock-in, amplitude decreases gradually with increasing of frequency ratio. When lift coefficient reaches its minimum value, the phase difference undergoes a suddenly change from the “out-of-phase” to the “in-phase” mode.

Keywords: Vortex induced vibration, limit cycle, CFD, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
1930 Influences of Thermal Relaxation Times on Generalized Thermoelastic Longitudinal Waves in Circular Cylinder

Authors: Fatimah A. Alshaikh

Abstract:

This paper is concerned with propagation of thermoelastic longitudinal vibrations of an infinite circular cylinder, in the context of the linear theory of generalized thermoelasticity with two relaxation time parameters (Green and Lindsay theory). Three displacement potential functions are introduced to uncouple the equations of motion. The frequency equation, by using the traction free boundary conditions, is given in the form of a determinant involving Bessel functions. The roots of the frequency equation give the value of the characteristic circular frequency as function of the wave number. These roots, which correspond to various modes, are numerically computed and presented graphically for different values of the thermal relaxation times. It is found that the influences of the thermal relaxation times on the amplitudes of the elastic and thermal waves are remarkable. Also, it is shown in this study that the propagation of thermoelastic longitudinal vibrations based on the generalized thermoelasticity can differ significantly compared with the results under the classical formulation. A comparison of the results for the case with no thermal effects shows well agreement with some of the corresponding earlier results.

Keywords: Wave propagation, longitudinal vibrations, circular cylinder, generalized thermoelasticity, Thermal relaxation times.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
1929 Statistical Screening of Medium Components on Ethanol Production from Cashew Apple Juice using Saccharomyces diasticus

Authors: Karuppaiya Maruthai, Viruthagiri Thangavelu, Manikandan Kanagasabai

Abstract:

In the present study, effect of critical medium components (a total of fifteen components) on ethanol production from waste cashew apple juice (CAJ) using yeast Saccharomyces diasticus was studied. A statistical response surface methodology (RSM) based Plackett-Burman Design (PBD) was used for the design of experiments. The design contains a total of 32 experimental trails. The effect of medium components on ethanol was studied at two different levels such as low concentration level (-) and high concentration levels (+). The dependent variables selected in this study were ethanol concentration (g/L) and cellmass concentration (g/L). Data obtained from RSM on ethanol production were subjected to analysis of variance (ANOVA). In general, initial substrate concentration significantly influenced the microbial growth and product formation. Of the medium components evaluated, CAJ concentration, yeast extract, (NH4)2SO4, and malt extract showed significant effect on ethanol fermentation. A second-order polynomial model was used to predict the experimental data and the model fitted the data with a high correlation coefficient (R2 > 0.98). Maximum ethanol (15.3 g/L) and biomass (6.4 g/L) concentrations were obtained at the optimum medium composition and at optimum condition (temperature-30°C; initial pH-6.8) after 72 h fermentation using S.diasticus.

Keywords: cashew apple juice, ethanol, fermentation, yeast, response surface methodology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2712
1928 Tumor Necrosis Factor-α Regulates Heme Oxygenase-1 Expression in Endothelial Cells via the Phosphorylation of JNK/p38

Authors: Chan-Jung Liang, Shu-Huei Wang, Pei-Jhen Wu, Jaw-Shiun Tsai, Chau-Chung Wu, Yuh-Lien Chen

Abstract:

Heme oxygenase-1 (HO-1), an enzyme degrading heme to carbon monoxide, iron, and biliverdin, has been recognized as playing a crucial role in cellular defense against stressful conditions, not only related to heme release. In the present study, the effects of TNF-a on the expression of heme oxygenase-1 (HO-1) in human aortic endothelial cells (HAECs) as well as the related mechanisms were investigated. 10 ng/mL TNF-α treatment significantly increased HO-1 expression after 6h, then a further increase at 12h and declined at 24h. Treatment with 2 ng/mL of TNF-a after 12 h resulted in a significant increase in HO-1 expression, which peaked at 10 ng/mL, then declined at 20 ng/mL. TNF-α induced HO-1 expression and then HO-1 expression reduced  vascular cell adhesion molecule-1 (VCAM-1) expression. Phosphorylation studies of ERK1/2, JNK, and p38, three subgroups of mitogen-activated protein kinases (MAPKs) demonstrated TNF-α-induced ERK1/2, JNK, and p38 phosphorylation. The increase in HO-1 expression in response to TNF-α treatment was affected by pretreatment with SP600125 (a JNK inhibitor) and SB203580 (a p38 inhibitor), not with PD98059 (an ERK1/2 inhibitor). The expression of HO-1 was stronger in aortas of TNF-α-treated apo-E deficient mice when compared with control mice. These results suggest that low dose of TNF-α treatment notably induced HO-1 expression was mediated through JNK/p38 phosphorylation and may have a protective potential in cardiovascular diseases and inflammatory response through the regulation of HO-1 expression.

Keywords: Heme oxygenase-1 inflammation, endothelial cells, mitogen-activated protein kinases (MAPKs).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5738
1927 System and Method for Providing Web-Based Remote Application Service

Authors: Shuen-Tai Wang, Yu-Ching Lin, Hsi-Ya Chang

Abstract:

With the development of virtualization technologies, a new type of service named cloud computing service is produced. Cloud users usually encounter the problem of how to use the virtualized platform easily over the web without requiring the plug-in or installation of special software. The object of this paper is to develop a system and a method enabling process interfacing within an automation scenario for accessing remote application by using the web browser. To meet this challenge, we have devised a web-based interface that system has allowed to shift the GUI application from the traditional local environment to the cloud platform, which is stored on the remote virtual machine. We designed the sketch of web interface following the cloud virtualization concept that sought to enable communication and collaboration among users. We describe the design requirements of remote application technology and present implementation details of the web application and its associated components. We conclude that this effort has the potential to provide an elastic and resilience environment for several application services. Users no longer have to burden the system maintenances and reduce the overall cost of software licenses and hardware. Moreover, this remote application service represents the next step to the mobile workplace, and it lets user to use the remote application virtually from anywhere.

Keywords: Virtualization technology, virtualized platform, web interface, remote application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 999
1926 Seismic Retrofitting of RC Buildings with Soft Storey and Floating Columns

Authors: Vinay Agrawal, Suyash Garg, Ravindra Nagar, Vinay Chandwani

Abstract:

Open ground storey with floating columns is a typical feature in the modern multistory constructions in urban India. Such features are very much undesirable in buildings built in seismically active areas. The present study proposes a feasible solution to mitigate the effects caused due to non-uniformity of stiffness and discontinuity in load path and to simultaneously hold the functional use of the open storey particularly under the floating column, through a combination of various lateral strengthening systems. An investigation is performed on an example building with nine different analytical models to bring out the importance of recognising the presence of open ground storey and floating columns. Two separate analyses on various models of the building namely, the equivalent static analysis and the response spectrum analysis as per IS: 1893-2002 were performed. Various measures such as incorporation of Chevron bracings and shear walls, strengthening the columns in the open ground storey, and their different combinations were examined. The analysis shows that, in comparison to two short ones separated by interconnecting beams, the structural walls are most effective when placed at the periphery of the buildings and used as one long structural wall. Further, it can be shown that the force transfer from floating columns becomes less horizontal when the Chevron Bracings are placed just below them, thereby reducing the shear forces in the beams on which the floating column rests.

Keywords: Equivalent static analysis, floating column, open ground storey, response spectrum analysis, shear wall, stiffness irregularity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
1925 Hydrogen Embrittlement in a Coupled Mass Diffusion with Stress near a Blunting Crack Tip for AISI 4135 Pressure Vessel

Authors: H. Dehghan, E. Mahdavi, M. M. Heyhat

Abstract:

In pressure vessels contain hydrogen, the role of hydrogen will be important because of hydrogen cracking problem. It is difficult to predict what is happened in metallurgical field spite of a lot of studies have been searched. The main role in controlling the mass diffusion as driving force is related to stress. In this study, finite element analysis is implemented to estimate material-s behavior associated with hydrogen embrittlement. For this purpose, one model of a pressure vessel is introduced that it has definite boundary and initial conditions. In fact, finite element is employed to solve the sequentially coupled mass diffusion with stress near a crack front in a pressure vessel. Modeling simulation intergrarnular fracture of AISI 4135 steel due to hydrogen is investigated. So, distribution of hydrogen and stress are obtained and they indicate that their maximum amounts occur near the crack front. This phenomenon is happened exactly the region between elastic and plastic field. Therefore, hydrogen is highly mobile and can diffuse through crystal lattice so that this zone is potential to trap high volume of hydrogen. Consequently, crack growth and fast fracture will be happened.

Keywords: Stress Intensity Factor, Mass Diffusion, FEM, Pressure Vessel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3074
1924 Topochemical Synthesis of Epitaxial Silicon Carbide on Silicon

Authors: Andrey V. Osipov, Sergey A. Kukushkin, Andrey V. Luk’yanov

Abstract:

A method is developed for the solid-phase synthesis of epitaxial layers when the substrate itself is involved into a topochemical reaction and the reaction product grows in the interior of substrate layer. It opens up new possibilities for the relaxation of the elastic energy due to the attraction of point defects formed during the topochemical reaction in anisotropic media. The presented method of silicon carbide (SiC) formation employs a topochemical reaction between the single-crystalline silicon (Si) substrate and gaseous carbon monoxide (CO). The corresponding theory of interaction of point dilatation centers in anisotropic crystals is developed. It is eliminated that the most advantageous location of the point defects is the direction (111) in crystals with cubic symmetry. The single-crystal SiC films with the thickness up to 200 nm have been grown on Si (111) substrates owing to the topochemical reaction with CO. Grown high-quality single-crystal SiC films do not contain misfit dislocations despite the huge lattice mismatch value of ~20%. Also the possibility of growing of thick wide-gap semiconductor films on these templates SiC/Si(111) and, accordingly, its integration into Si electronics, is demonstrated. Finally, the ab initio theory of SiC formation due to the topochemical reaction has been developed.

Keywords: Epitaxy, silicon carbide, topochemical reaction, wide-bandgap semiconductors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1083
1923 Design of QFT-Based Self-Tuning Deadbeat Controller

Authors: H. Mansor, S. B. Mohd Noor

Abstract:

This paper presents a design method of self-tuning Quantitative Feedback Theory (QFT) by using improved deadbeat control algorithm. QFT is a technique to achieve robust control with pre-defined specifications whereas deadbeat is an algorithm that could bring the output to steady state with minimum step size. Nevertheless, usually there are large peaks in the deadbeat response. By integrating QFT specifications into deadbeat algorithm, the large peaks could be tolerated. On the other hand, emerging QFT with adaptive element will produce a robust controller with wider coverage of uncertainty. By combining QFT-based deadbeat algorithm and adaptive element, superior controller that is called selftuning QFT-based deadbeat controller could be achieved. The output response that is fast, robust and adaptive is expected. Using a grain dryer plant model as a pilot case-study, the performance of the proposed method has been evaluated and analyzed. Grain drying process is very complex with highly nonlinear behaviour, long delay, affected by environmental changes and affected by disturbances. Performance comparisons have been performed between the proposed self-tuning QFT-based deadbeat, standard QFT and standard dead-beat controllers. The efficiency of the self-tuning QFTbased dead-beat controller has been proven from the tests results in terms of controller’s parameters are updated online, less percentage of overshoot and settling time especially when there are variations in the plant.

Keywords: Deadbeat control, quantitative feedback theory (QFT), robust control, self-tuning control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2333
1922 Energy Efficient Resource Allocation and Scheduling in Cloud Computing Platform

Authors: Shuen-Tai Wang, Ying-Chuan Chen, Yu-Ching Lin

Abstract:

There has been renewal of interest in the relation between Green IT and cloud computing in recent years. Cloud computing has to be a highly elastic environment which provides stable services to users. The growing use of cloud computing facilities has caused marked energy consumption, putting negative pressure on electricity cost of computing center or data center. Each year more and more network devices, storages and computers are purchased and put to use, but it is not just the number of computers that is driving energy consumption upward. We could foresee that the power consumption of cloud computing facilities will double, triple, or even more in the next decade. This paper aims at resource allocation and scheduling technologies that are short of or have not well developed yet to reduce energy utilization in cloud computing platform. In particular, our approach relies on recalling services dynamically onto appropriate amount of the machines according to user’s requirement and temporarily shutting down the machines after finish in order to conserve energy. We present initial work on integration of resource and power management system that focuses on reducing power consumption such that they suffice for meeting the minimizing quality of service required by the cloud computing platform.

Keywords: Cloud computing, energy utilization, power consumption, resource allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
1921 Transformer Life Enhancement Using Dynamic Switching of Second Harmonic Feature in IEDs

Authors: K. N. Dinesh Babu, P. K. Gargava

Abstract:

Energization of a transformer results in sudden flow of current which is an effect of core magnetization. This current will be dominated by the presence of second harmonic, which in turn is used to segregate fault and inrush current, thus guaranteeing proper operation of the relay. This additional security in the relay sometimes obstructs or delays differential protection in a specific scenario, when the 2nd harmonic content was present during a genuine fault. This kind of scenario can result in isolation of the transformer by Buchholz and pressure release valve (PRV) protection, which is acted when fault creates more damage in transformer. Such delays involve a huge impact on the insulation failure, and chances of repairing or rectifying fault of problem at site become very dismal. Sometimes this delay can cause fire in the transformer, and this situation becomes havoc for a sub-station. Such occurrences have been observed in field also when differential relay operation was delayed by 10-15 ms by second harmonic blocking in some specific conditions. These incidences have led to the need for an alternative solution to eradicate such unwarranted delay in operation in future. Modern numerical relay, called as intelligent electronic device (IED), is embedded with advanced protection features which permit higher flexibility and better provisions for tuning of protection logic and settings. Such flexibility in transformer protection IEDs, enables incorporation of alternative methods such as dynamic switching of second harmonic feature for blocking the differential protection with additional security. The analysis and precautionary measures carried out in this case, have been simulated and discussed in this paper to ensure that similar solutions can be adopted to inhibit analogous issues in future.

Keywords: Differential protection, intelligent electronic device (IED), 2nd harmonic, inrush inhibit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1048
1920 Computer Aided Design of Reshaping Process of Circular Pipes into Square Pipes

Authors: Parviz Alinezhad, Ali Sanati, Koorosh Naser Momtahen

Abstract:

Square pipes (pipes with square cross sections) are being used for various industrial objectives, such as machine structure components and housing/building elements. The utilization of them is extending rapidly and widely. Hence, the out-put of those pipes is increasing and new application fields are continually developing. Due to various demands in recent time, the products have to satisfy difficult specifications with high accuracy in dimensions. The reshaping process design of pipes with square cross sections; however, is performed by trial and error and based on expert-s experience. In this paper, a computer-aided simulation is developed based on the 2-D elastic-plastic method with consideration of the shear deformation to analyze the reshaping process. Effect of various parameters such as diameter of the circular pipe and mechanical properties of metal on product dimension and quality can be evaluated by using this simulation. Moreover, design of reshaping process include determination of shrinkage of cross section, necessary number of stands, radius of rolls and height of pipe at each stand, are investigated. Further, it is shown that there are good agreements between the results of the design method and the experimental results.

Keywords: Circular Pipes, Square Pipes, Shear Deformation, Reshaping Process, Numerical Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
1919 Quality Fed-Batch Bioprocess Control A Case Study

Authors: Mihai Caramihai, Irina Severin

Abstract:

Bioprocesses are appreciated as difficult to control because their dynamic behavior is highly nonlinear and time varying, in particular, when they are operating in fed batch mode. The research objective of this study was to develop an appropriate control method for a complex bioprocess and to implement it on a laboratory plant. Hence, an intelligent control structure has been designed in order to produce biomass and to maximize the specific growth rate.

Keywords: Fed batch bioprocess, mass-balance model, fuzzy control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
1918 Statistical Modeling of Accelerated Pavement Failure Using Response Surface Methodology

Authors: Anshu Manik, Kasthurirangan Gopalakrishnan, Siddhartha K. Khaitan

Abstract:

Rutting is one of the major load-related distresses in airport flexible pavements. Rutting in paving materials develop gradually with an increasing number of load applications, usually appearing as longitudinal depressions in the wheel paths and it may be accompanied by small upheavals to the sides. Significant research has been conducted to determine the factors which affect rutting and how they can be controlled. Using the experimental design concepts, a series of tests can be conducted while varying levels of different parameters, which could be the cause for rutting in airport flexible pavements. If proper experimental design is done, the results obtained from these tests can give a better insight into the causes of rutting and the presence of interactions and synergisms among the system variables which have influence on rutting. Although traditionally, laboratory experiments are conducted in a controlled fashion to understand the statistical interaction of variables in such situations, this study is an attempt to identify the critical system variables influencing airport flexible pavement rut depth from a statistical DoE perspective using real field data from a full-scale test facility. The test results do strongly indicate that the response (rut depth) has too much noise in it and it would not allow determination of a good model. From a statistical DoE perspective, two major changes proposed for this experiment are: (1) actual replication of the tests is definitely required, (2) nuisance variables need to be identified and blocked properly. Further investigation is necessary to determine possible sources of noise in the experiment.

Keywords: Airport Pavement, Design of Experiments, Rutting, NAPTF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
1917 High-Efficiency Comparator for Low-Power Application

Authors: M. Yousefi, N. Nasirzadeh

Abstract:

In this paper, dynamic comparator structure employing two methods for power consumption reduction with applications in low-power high-speed analog-to-digital converters have been presented. The proposed comparator has low consumption thanks to power reduction methods. They have the ability for offset adjustment. The comparator consumes 14.3 μW at 100 MHz which is equal to 11.8 fJ. The comparator has been designed and simulated in 180 nm CMOS. Layouts occupy 210 μm2.

Keywords: Comparator, low, power, efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
1916 Influence of Ball Milling Time on Mechanical Properties of Porous Ti-20Nb-5Ag Alloy

Authors: M. J. Shivaram, Shashi Bhushan Arya, Jagannath Nayak, Bharat Bhooshan Panigrahi

Abstract:

Titanium and its alloys have become more significant implant materials due to their mechanical properties, excellent biocompatibility and high corrosion resistance. Biomaterials can be produce by using the powder metallurgy (PM) methods and required properties can tailored by varying the processing parameters, such as ball milling time, space holder particles, and sintering temperature. The desired properties such as, structural and mechanical properties can be obtained by powder metallurgy method.  In the present study, deals with fabrication of solid and porous Ti-20Nb-5Ag alloy using high energy ball milling for different times (5 and 20 h). The resultant powder particles were used to fabricate solid and porous Ti-20Nb-5Ag alloy by adding space holder particles (NH4HCO3). The resultant powder particles, fabricated solid and porous samples were characterized by scanning electron microscopy (SEM). The compressive strength, elastic modulus and microhardness properties were investigated. Solid and porous Ti-20Nb-5Ag alloy samples showed good mechanical properties for 20 h ball milling time as compare to 5 h ball milling.

Keywords: Ball Milling, compressive strengths, microstructure, porous Titanium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880
1915 Micromechanics Modeling of 3D Network Smart Orthotropic Structures

Authors: E. M. Hassan, A. L. Kalamkarov

Abstract:

Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unitcell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.

Keywords: Asymptotic Homogenization Method, Effective Piezothermoelastic Coefficients, Finite Element Analysis, 3D Smart Network Composite Structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099
1914 Non-Linear Numerical Modeling of the Interaction of Twin Tunnels-Structure

Authors: A. Bayoumi, M. Abdallah, F. Hage Chehade

Abstract:

Structures on the ground surface bear impact from the tunneling-induced settlement, especially when twin tunnels are constructed. The tunneling influence on the structure is considered as a critical issue based on the construction procedure and relative position of tunnels. Lebanon is suffering from a traffic phenomenon caused by the lack of transportation systems. After several traffic counts and geotechnical investigations in Beirut city, efforts aim for the construction of tunneling systems. In this paper, we present a non-linear numerical modeling of the effect of the twin tunnels constructions on the structures located at soil surface for a particular site in Beirut. A parametric study, which concerns the geometric configuration of tunnels, the distance between their centers, the construction order, and the position of the structure, is performed. The tunnel-soil-structure interaction is analyzed by using the non-linear finite element modeling software PLAXIS 2D. The results of the surface settlement and the bending moment of the structure reveal significant influence when the structure is moved away, especially in vertical aligned tunnels.

Keywords: Bending moment, construction procedure, elastic modulus, relative position, soil, structure location, surface settlement, twin tunnels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
1913 Optimization of the Characteristic Straight Line Method by a “Best Estimate“ of Observed, Normal Orthometric Elevation Differences

Authors: Mahmoud M. S. Albattah

Abstract:

In this paper, to optimize the “Characteristic Straight Line Method" which is used in the soil displacement analysis, a “best estimate" of the geodetic leveling observations has been achieved by taking in account the concept of 'Height systems'. This concept has been discussed in detail and consequently the concept of “height". In landslides dynamic analysis, the soil is considered as a mosaic of rigid blocks. The soil displacement has been monitored and analyzed by using the “Characteristic Straight Line Method". Its characteristic components have been defined constructed from a “best estimate" of the topometric observations. In the measurement of elevation differences, we have used the most modern leveling equipment available. Observational procedures have also been designed to provide the most effective method to acquire data. In addition systematic errors which cannot be sufficiently controlled by instrumentation or observational techniques are minimized by applying appropriate corrections to the observed data: the level collimation correction minimizes the error caused by nonhorizontality of the leveling instrument's line of sight for unequal sight lengths, the refraction correction is modeled to minimize the refraction error caused by temperature (density) variation of air strata, the rod temperature correction accounts for variation in the length of the leveling rod' s Invar/LO-VAR® strip which results from temperature changes, the rod scale correction ensures a uniform scale which conforms to the international length standard and the introduction of the concept of the 'Height systems' where all types of height (orthometric, dynamic, normal, gravity correction, and equipotential surface) have been investigated. The “Characteristic Straight Line Method" is slightly more convenient than the “Characteristic Circle Method". It permits to evaluate a displacement of very small magnitude even when the displacement is of an infinitesimal quantity. The inclination of the landslide is given by the inverse of the distance reference point O to the “Characteristic Straight Line". Its direction is given by the bearing of the normal directed from point O to the Characteristic Straight Line (Fig..6). A “best estimate" of the topometric observations was used to measure the elevation of points carefully selected, before and after the deformation. Gross errors have been eliminated by statistical analyses and by comparing the heights within local neighborhoods. The results of a test using an area where very interesting land surface deformation occurs are reported. Monitoring with different options and qualitative comparison of results based on a sufficient number of check points are presented.

Keywords: Characteristic straight line method, dynamic height, landslides, orthometric height, systematic errors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
1912 The Comparison of Data Replication in Distributed Systems

Authors: Iman Zangeneh, Mostafa Moradi, Ali Mokhtarbaf

Abstract:

The necessity of ever-increasing use of distributed data in computer networks is obvious for all. One technique that is performed on the distributed data for increasing of efficiency and reliablity is data rplication. In this paper, after introducing this technique and its advantages, we will examine some dynamic data replication. We will examine their characteristies for some overus scenario and the we will propose some suggestion for their improvement.

Keywords: data replication, data hiding, consistency, dynamicdata replication strategy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
1911 Bioprocess Intelligent Control: A Case Study

Authors: Mihai Caramihai Ana A Chirvase, Irina Severin

Abstract:

Bioprocesses are appreciated as difficult to control because their dynamic behavior is highly nonlinear and time varying, in particular, when they are operating in fed batch mode. The research objective of this study was to develop an appropriate control method for a complex bioprocess and to implement it on a laboratory plant. Hence, an intelligent control structure has been designed in order to produce biomass and to maximize the specific growth rate.

Keywords: Fed batch bioprocess, mass-balance model, fuzzy control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
1910 Enhanced Magnetoelastic Response near Morphotropic Phase Boundary in Ferromagnetic Materials: Experimental and Theoretical Analysis

Authors: Murtaza Adil, Sen Yang, Zhou Chao, Song Xiaoping

Abstract:

The morphotropic phase boundary (MPB) recently has attracted constant interest in ferromagnetic systems for obtaining enhanced large magnetoelastic response. In the present study, structural and magnetoelastic properties of MPB involved ferromagnetic Tb1-xGdxFe2 (0≤x≤1) system has been investigated. The change of easy magnetic direction from <111> to <100> with increasing x up MPB composition of x=0.9 is detected by step-scanned [440] synchrotron X-ray diffraction reflections. The Gd substitution for Tb changes the composition for the anisotropy compensation near MPB composition of x=0.9, which was confirmed by the analysis of detailed scanned XRD, magnetization curves and the calculation of the first anisotropy constant K1. The spin configuration diagram accompanied with different crystal structures for Tb1-xGdxFe2 was designed. The calculated first anisotropy constant K1 shows a minimum value at MPB composition of x=0.9. In addition, the large ratio between magnetostriction, and the absolute values of the first anisotropy constant │λS∕K1│ appears at MPB composition, which makes it a potential material for magnetostrictive application. Based on experimental results, a theoretically approach was also proposed to signify that the facilitated magnetization rotation and enhanced magnetoelastic effect near MPB composition are a consequence of the anisotropic flattening of free energy of ferromagnetic crystal. Our work specifies the universal existence of MPB in ferromagnetic materials which is important for substantial improvement of magnetic and magnetostrictive properties and may provide a new route to develop advanced functional materials.

Keywords: Free energy, lattice distortion, magnetic anisotropy, magnetostriction, morphotropic phase boundary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252
1909 Combined Effect of Cold Rolling and Heat Treatment on the Mechanical Properties of Al-Ti Alloy

Authors: Adeosun S. Oluropo, Sekunowo O. Israel, Talabi S. Isaac

Abstract:

This study investigated the combined effect of cold rolling and heat treatment on the mechanical properties of Al-Ti alloy. Samples of the alloy are cast in metal mould to obtain 0.94-2.19wt% mixes of titanium. These samples are grouped into untreated (as-cast) and those that are cold rolled to fifty percent reduction, homogenized at 5000C and soaked for one hour. The cold rolled and heat treated samples are normalized (RTn) and quench-tempered (RTq-t) at 1000C. All these samples are subjected to tensile, micro-hardness and microstructural evaluation. Results show remarkable improvement in the mechanical properties of the cold rolled and heat treated samples compared to the as-cast. In particular, the RTq-t samples containing titanium in the range of 1.7-2.2% demonstrates improve tensile strength by 24.7%, yield strength, 28%, elastic modulus, 38.3% and micro-hardness, 20.5%. The Al3Ti phase being the most stable precipitate in the α-Al matrix appears to have been responsible for the significant improvement in the alloy’s mechanical properties. It is concluded that quench and temper heat treatment is an effective method of improving the strength-strain ratio of cold rolled Al-.0.9-2.2%Ti alloy.

Keywords: Aluminum-titanium alloy, heat treatment, mechanical properties, precipitate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2759
1908 A Comparison of Inverse Simulation-Based Fault Detection in a Simple Robotic Rover with a Traditional Model-Based Method

Authors: Murray L. Ireland, Kevin J. Worrall, Rebecca Mackenzie, Thaleia Flessa, Euan McGookin, Douglas Thomson

Abstract:

Robotic rovers which are designed to work in extra-terrestrial environments present a unique challenge in terms of the reliability and availability of systems throughout the mission. Should some fault occur, with the nearest human potentially millions of kilometres away, detection and identification of the fault must be performed solely by the robot and its subsystems. Faults in the system sensors are relatively straightforward to detect, through the residuals produced by comparison of the system output with that of a simple model. However, faults in the input, that is, the actuators of the system, are harder to detect. A step change in the input signal, caused potentially by the loss of an actuator, can propagate through the system, resulting in complex residuals in multiple outputs. These residuals can be difficult to isolate or distinguish from residuals caused by environmental disturbances. While a more complex fault detection method or additional sensors could be used to solve these issues, an alternative is presented here. Using inverse simulation (InvSim), the inputs and outputs of the mathematical model of the rover system are reversed. Thus, for a desired trajectory, the corresponding actuator inputs are obtained. A step fault near the input then manifests itself as a step change in the residual between the system inputs and the input trajectory obtained through inverse simulation. This approach avoids the need for additional hardware on a mass- and power-critical system such as the rover. The InvSim fault detection method is applied to a simple four-wheeled rover in simulation. Additive system faults and an external disturbance force and are applied to the vehicle in turn, such that the dynamic response and sensor output of the rover are impacted. Basic model-based fault detection is then employed to provide output residuals which may be analysed to provide information on the fault/disturbance. InvSim-based fault detection is then employed, similarly providing input residuals which provide further information on the fault/disturbance. The input residuals are shown to provide clearer information on the location and magnitude of an input fault than the output residuals. Additionally, they can allow faults to be more clearly discriminated from environmental disturbances.

Keywords: Fault detection, inverse simulation, rover, ground robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 946
1907 Removal of Malachite Green from Aqueous Solution using Hydrilla verticillata -Optimization, Equilibrium and Kinetic Studies

Authors: R. Rajeshkannan, M. Rajasimman, N. Rajamohan

Abstract:

In this study, the sorption of Malachite green (MG) on Hydrilla verticillata biomass, a submerged aquatic plant, was investigated in a batch system. The effects of operating parameters such as temperature, adsorbent dosage, contact time, adsorbent size, and agitation speed on the sorption of Malachite green were analyzed using response surface methodology (RSM). The proposed quadratic model for central composite design (CCD) fitted very well to the experimental data that it could be used to navigate the design space according to ANOVA results. The optimum sorption conditions were determined as temperature - 43.5oC, adsorbent dosage - 0.26g, contact time - 200min, adsorbent size - 0.205mm (65mesh), and agitation speed - 230rpm. The Langmuir and Freundlich isotherm models were applied to the equilibrium data. The maximum monolayer coverage capacity of Hydrilla verticillata biomass for MG was found to be 91.97 mg/g at an initial pH 8.0 indicating that the optimum sorption initial pH. The external and intra particle diffusion models were also applied to sorption data of Hydrilla verticillata biomass with MG, and it was found that both the external diffusion as well as intra particle diffusion contributes to the actual sorption process. The pseudo-second order kinetic model described the MG sorption process with a good fitting.

Keywords: Response surface methodology, Hydrilla verticillata, malachite green, adsorption, central composite design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
1906 MAGNI Dynamics: A Vision-Based Kinematic and Dynamic Upper-Limb Model for Intelligent Robotic Rehabilitation

Authors: Alexandros Lioulemes, Michail Theofanidis, Varun Kanal, Konstantinos Tsiakas, Maher Abujelala, Chris Collander, William B. Townsend, Angie Boisselle, Fillia Makedon

Abstract:

This paper presents a home-based robot-rehabilitation instrument, called ”MAGNI Dynamics”, that utilized a vision-based kinematic/dynamic module and an adaptive haptic feedback controller. The system is expected to provide personalized rehabilitation by adjusting its resistive and supportive behavior according to a fuzzy intelligence controller that acts as an inference system, which correlates the user’s performance to different stiffness factors. The vision module uses the Kinect’s skeletal tracking to monitor the user’s effort in an unobtrusive and safe way, by estimating the torque that affects the user’s arm. The system’s torque estimations are justified by capturing electromyographic data from primitive hand motions (Shoulder Abduction and Shoulder Forward Flexion). Moreover, we present and analyze how the Barrett WAM generates a force-field with a haptic controller to support or challenge the users. Experiments show that by shifting the proportional value, that corresponds to different stiffness factors of the haptic path, can potentially help the user to improve his/her motor skills. Finally, potential areas for future research are discussed, that address how a rehabilitation robotic framework may include multisensing data, to improve the user’s recovery process.

Keywords: Human-robot interaction, kinect, kinematics, dynamics, haptic control, rehabilitation robotics, artificial intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320