

Abstract—With the development of virtualization technologies, a

new type of service named cloud computing service is produced.
Cloud users usually encounter the problem of how to use the
virtualized platform easily over the web without requiring the plug-in
or installation of special software. The object of this paper is to
develop a system and a method enabling process interfacing within an
automation scenario for accessing remote application by using the web
browser. To meet this challenge, we have devised a web-based
interface that system has allowed to shift the GUI application from the
traditional local environment to the cloud platform, which is stored on
the remote virtual machine. We designed the sketch of web interface
following the cloud virtualization concept that sought to enable
communication and collaboration among users. We describe the
design requirements of remote application technology and present
implementation details of the web application and its associated
components. We conclude that this effort has the potential to provide
an elastic and resilience environment for several application services.
Users no longer have to burden the system maintenances and reduce
the overall cost of software licenses and hardware. Moreover, this
remote application service represents the next step to the mobile
workplace, and it lets user to use the remote application virtually from
anywhere.

Keywords—Virtualization technology, virtualized platform, web
interface, remote application.

I. INTRODUCTION

ITH the growing prevalence of virtualization
technologies, there is an increasing demand for

intellectual information about application virtualization [1]-[3]
solutions in the current market. Through application
virtualization, almost all applications can be used without
installing the application software at a particular environment
or changing the local operating system. In other words, the
application can be accessed as if it had been installed locally
without the need of any modifications to the local client.
Resources such as the computing power, data storage and
network take care of the execution of these applications. So the
display of application delivery over network is a process which
has the goal of offering application independent of device and
location. Users can work online from anywhere with any device
and at any time.

The concept of application virtualization is not new since it
has been introduced in the early 2010s. In the early days, many
authors [4]-[6] have realized the practicability of desktop
virtualization. They adopt platform virtualization in cloud
environment to provide remote desktop service. In such cases,

S.T. Wang, Y.C. Lin and H.Y. Chang are with the National Center for

High-Performance Computing, Taiwan, R.O.C. (e-mail: stwang@nchc.org.tw
1203043@nchc.org.tw, jerry@nchc.org.tw).

platform virtualization acts as a central component that can
achieve the purpose of cloud platform and service, and it is an
approach to consolidate multiple services into a smaller number
of computing resource. A virtualized server allows the
computing resources to be shared among multiple isolated
platforms which are virtual machines [7], [8]. A virtual
machine is a software implementation of a machine that can
execute operating system like the physical machine. Each
virtual machine has system kernel, operating system,
supporting libraries and applications. A hypervisor provides an
abstraction of the underlying physical machine, and multiple
virtual machines can be operated simultaneously under the
hypervisor. This mechanism is able to allow the same virtual
machine to be launched on different physical machines. Thus
platform virtualization is seen as an enabler for cloud
computing, allowing the cloud service provider the necessary
flexibility to allocate the cloud resources requested by the user
wherever the physical resources are available.

The remote application has received great interests in
virtualization research community. Remote application
technique has been used in client-server environment, wherein
the application programs are stored on a server, and the client
computers access the server to obtain functionality from the
applications. Many problems will arise in developing remote
application; the important one is that the remote application
requires specific intelligence about the display characteristics
of the client computer. If the environment has many client
computers, then the remote application must know the
requirements of each client computer. This limit significantly
increases complexity of the server software to support the
various types of devices. Therefore, it is desirable to develop a
unified web-based interface that permits the remote application
to operate on many client devices without requiring to have
installation of special software or any necessary of
configuration.

In this paper, we propose the system and method for
adopting the remote application virtualization in cloud platform.
We design service-oriented architecture of remote application
technology, and present implementation details of the web
application and its associated components. We integrate remote
application and software streaming technology that make it
possible for providing remote application as a service, which is
efficient, resilience and independent of the operating system.
Our work allows users to launch virtual applications from a
remote server that appear on their computer as if it is installed
locally, but in reality are running on a remote server. We also
implemented a sketch of unified web-based interface to make
such a service is simple and easy to use for both beginner and

Shuen-Tai Wang, Yu-Ching Lin, Hsi-Ya Chang

System and Method for Providing Web-Based Remote
Application Service

W

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:11, No:12, 2017

1299International Scholarly and Scientific Research & Innovation 11(12) 2017 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

1,
 N

o:
12

, 2
01

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

08
31

5.
pd

f

expert in any place and on any device.
The rest of this paper is organized as follows. Section II lists

the related works. Section III gives a description of software
architecture. Section IV gives some details of the
implementation. Section V discusses future work and
concludes.

II. RELATED WORKS

We have given many tests on some remote application
products before developing remote application as a service.
Currently, two well-known solutions for the application
virtualization are Microsoft RemoteApp [9] and Citrix XenApp
[10]. They have the virtualization interface at the hardware
abstraction layer. They virtualize common hardware like
processor, memory and storage devices such that multiple
operating system instances can be installed on a single
machine.

A. Microsoft RemoteApp

Microsoft RemoteApp is a virtual application solution that
allows users to run windows-based applications regardless of
what operating system they are using. It uses the Remote
Desktop Protocol (RDP) [11] to deliver the applications if they
are native to the end user's devic. It provides a single
infrastructure to enable both virtual and session-based desktops
and programs. Currently, users can create a RemoteApp
deployment using Microsoft Azure infrastructure directly. The
Azure RemoteApp brings the functionality of the on-premises
program by remote desktop services. It helps us provide remote
access to applications from many different user devices. It
basically hosts non-persistent terminal server sessions in the
cloud, and we can use them and share them.

B. Citrix XenApp

Citrix XenApp is an application virtualization software that
provides Windows applications can be executed on different
devices. It provides features such as user self-storage and
various user experience enhancements. From [12], a XenApp
consists of three parts:
1) A multiuser environment: It allows multiple users to access

to Citrix XenApp independently by using Microsoft

Windows Server with the Remote Desktop feature.
2) XenApp software: XenApp delivers the remote Windows

desktops and applications to local devices via the HDX
protocol [13] without the necessity of installing them.
HDX protocol is to ensure the XenApp users achieve a
high quality virtualization user experience similar to with
the desktop computers.

3) Client devices: Citrix XenApp applications can be
accessed by various devices using the Citrix Receiver.

Both Microsoft RemoteApp and Citrix XenApp are very
close in overall performance overhead. However, Citrix
Application streaming overhead was considerably higher than
RemoteApp in our tests. Both are commercial products,
deployment of this product is not affordable by small
enterprises or educational institutions. It has to install some
software on user's endpoint devices such as thin client or PCs.

III. ARCHITECTURE

A. System Architecture

Fig. 1 shows an overview of logical architecture for a
standard three-tier architecture. The system is split into
multiple modules. In client side, there is a HTML5 web
application that supports graphical access directly on the
browser and without additional plugins. It rests on today's web
protocols: JSON, AJAX, and XML as well. The web
application will connect to the Broker. The Broker runs on an
Apache server with a servlet container and then reads the
specific requests. It is the heart of our system which
dynamically loads support for remote application protocols and
connects them to back-end platform based on instructions
received from the web application. In fact, the Broker is a
process which is installed and runs in background, listening for
HTTP connections from the web application. The Broker also
does not understand any specific protocols, but rather
implements just enough of the helper like scheduler and
dispatcher to determine which protocol support needs to be
loaded and what arguments must be passed to it. Actually, the
Broker interprets the contents and handoff the connection to the
Proxy then connecting to any number of remote desktop servers
on behalf of the user.

Fig. 1 System architecture

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:11, No:12, 2017

1300International Scholarly and Scientific Research & Innovation 11(12) 2017 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

1,
 N

o:
12

, 2
01

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

08
31

5.
pd

f

B. Software Architecture

Fig. 2 shows the software architecture of our service system.
Our system is entirely web-based that way the end user does not
need to install any plugins on the local computer. In particular,
this enables accessing the remote application from a wide range
of devices, including mobile devices such as Pad or
Smartphone.

Fig. 2 Software architecture

The following are basic components:
1) KVM: Kernel-based Virtual Machine consists of a

loadable kernel module that provides the core
virtualization. The goal was to create a virtualization
hypervisor that builds on the experience of previous
generations of technologies and takes advantage of current
hardware. By using KVM, we can build multiple virtual
machines running unmodified Linux or Windows images.

2) Xen: It is a lightweight, high performance, open source
hypervisor that enables the simultaneous creation,
execution and management of multiple virtual machines on
one physical machine. It is used as the basis for a number
of different open source applications, such as: server
virtualization, desktop virtualization, security applications,
embedded and hardware appliances.

3) OpenStack: It [14] is a cloud operating system that controls
large pools of compute, storage, and networking resources
throughout a data center. It is a collection of open source
software that allows us to perform certain functions on the
cloud.

4) Libvirt APIs: Libvirt [15] is used to interface with different
hypervisors. We use it to interact with the KVM and Xen
through a common C programming library.

5) Python: Python is a widely used high-level programming
language for general-purpose programming. We adopt the
Python program language to build the management web
pages.

6) MariaDB: It is an open source relational database
management system based on MySQL. We use MariaDB
to provide the database service for web applications hosted
with application server.

7) Google Web Toolkit [16]: Our web pages were built by

using the Model-View-Controller (MVC) based Google
Web Toolkit framework. The SDK provides a set of core
Java APIs and Widgets. These allow us to write AJAX
applications in Java and then compile the source to highly
optimized JavaScript that runs across all browsers.

C. Service Platform

Table I is the specification information of our service
platform named Formosa 5 [17]. Formosa 5 is a
high-performance Beowulf cluster located at National Center
for High Performance Computing (NCHC) [18]. It consists of
84 servers as its compute nodes. This self-made cluster was
constructed by the 'HPC Cluster Group' at NCHC for cloud
services and came online in 2012. Each machine has two six
cores Intel Xeon x5670 2.93GHz processors and 96GB of
DDR3 registered ECC SDRAM. All nodes were connected on
InfiniBand network and a private subnet with Gigabit Ethernet.

TABLE I

FORMOSA 5 CLOUD CLUSTER SPECIFICATION

CPU Intel Xeon x5670 six cores 2.93GHz

Hard Disk 120GB SSD

Memory 96GB DDR3 Registered ECC SDRAM

Network 4x QDR 40Gb Infiniband and Gigabit Ethernet

Operating System CentOS 6.4

Hypervisor Kernel-based Virtual Machine

Fig. 3 System module

IV. IMPLEMENTATION

This section aims to explain the details of implementation
involved with related modules. As shown in Fig. 3, these
modules held in system can be fully integrated with the
client-side portal and fully combination in between the
underlying virtualization platform. The system modules are as
follows:

A. Resource Broker

A resource broker determines which VM-hosted remote
applications will be available to a user and which user will get
access to which applications, both persistent and non-persistent.
When using a VM-hosted virtual application infrastructure for

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:11, No:12, 2017

1301International Scholarly and Scientific Research & Innovation 11(12) 2017 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

1,
 N

o:
12

, 2
01

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

08
31

5.
pd

f

this, it is possible to either designate dedicated applications or a
pool of remote applications. And then the application accession
module can automatically create, remove or pause remote
applications. Depending on the virtualization platform, the
application accession may have additional functions, such as a
web interface that can create secure connections to remote
applications, directory services and integration with remote
agent. Depending on the requests, it is possible to execute
remote applications centrally on a terminal program or on web
page.

B. Session Manager

With session manager every user has his or her unique
connection session. Such sessions share the same server
operating system for each user, as opposed to VM-hosted
infrastructure where each user has access to their own dedicated
remote application. Session manager is a solution for the
remote access to desktops and applications that are run on an
application server. Access to the application is not tied to the
end-user machine, and programs are executed on the server
centrally.

C. Streaming Deliverer

The delivery process of transporting the application specific
resources or data to the end-point at the time the application is
executed is called streaming deliverer. The application is
running and only the minimum amount of data is delivered to
the client before application is launched. This result in the first
time application launch for the user, it also makes it possible to
keep user images and results in reduced load on the network.
Additional functions of the application are delivered without
user intervention. The packages of application are stored on a
centralized server, which can be a shared or dedicated
infrastructure platform. The streaming deliverer transports the
data over network in an efficient, secure and optimized way.

D. Virtualization Manager

 This module provides virtualization of operating system
and customization of remote application environment and
software resources. The development of this module is
designed according to the user requirement, and based on the
open virtual desktop software. The full application
virtualization also requires a virtualization layer with the
operating system. The layer intercepts all file and registry
operations of virtualized applications and transparently
redirects them to a virtualized location.

Our web-based remote application system is built based on
the VDI (Virtual Desktop Infrastructure) framework [19]. VDI
is a remote desktop solution for providing remote access to
Windows desktops. The implementation of VDIs means that
applications are no longer bound to a location or end-user
appliance. So in our system, each user can have their own
unique, personalized, fully independent workplace. The
information is sent to the client screen via a remote display
protocol such as RDP and VNC. These protocols used for
displaying the correct information depend on the operating
system and the type of application. For Windows platform, we
implemented a RDP interpreter based on FreeRDP [20] library

to capture the graphical content and identify the basic semantic
information. This semantic information is described by using
the RDP specification. For Linux-based service platform, we
implemented a VNC interpreter based on the LibVNC [21]
library. These protocols generally provide methods for
accessing the remote applications. This unique functionality
also gives administrator complete control on how applications
are delivered and interact with client devices. As with other
application delivery solutions, our service platform consists of
various infrastructure components that facilitate provisioning,
application delivery, load balancing, session control and secure
access to virtual machines.

Fig. 4 illustrates a simple web interface for remote WordPad
application hosted on Windows 7. WordPad is a basic
text-editing program available in the Microsoft Windows
operating system. We can use WordPad to create documents
such as letters, notes and posters on remote environment
through a web-based interface. Although the program is
running on a remote computer, they behave as if they are
running on your local computer. This feature enables accessing
the interface natively on different mobile devices particularly.

Fig. 5 is web-based SSH terminal program running on
remote Windows 7 system. SSH is a text protocol, the
implementation of this interface is actually a combination of a
terminal emulator and SSH client, because the SSH protocol
isn't inherently graphical. So this widget emulates a terminal on
the server side and draws the screen of this terminal remotely
on the client.

V. CONCLUSION

Client-side application virtualization reduces the cost of
installing, testing and supporting variable applications. Using
isolation and application streaming technologies, server-side
application virtualization enables local virtualized applications.
Rather than installing applications on each user’s computer, the
remote applications are streamed to a protected isolation
environment on their client device.

In this paper, we presented the system and method for
embracing the remote application virtualization in cloud
platform. We developed a service-oriented architecture of
remote application technology, and gave the details of the web
application and its associated modules. We integrated resource
scheduling and allocation that make it possible for providing
remote application as a service, which is efficient, resilience
and independent of the operating system. This system allows
users to launch remote applications from the back-end server
that appear on their device as if it is installed locally. We also
implemented a unified web-based interface to make such a
service is easy to use for users in any place and on any device.

Currently, this service normally enforces authentication,
requiring all users to have a corresponding set of credentials.
An important next step involves online model refinement to
address dynamically changing application behavior. It would
be interesting to see if refining the schema to incorporate the
influence of additional underlying hardware, especially
resource allocation and data storage. We also plan to reduce the
communication overhead of connection proxy and import some

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:11, No:12, 2017

1302International Scholarly and Scientific Research & Innovation 11(12) 2017 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

1,
 N

o:
12

, 2
01

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

08
31

5.
pd

f

smart management strategies for physical machines to reduce
power consumption in service platform.

Fig. 4 Web-based remote WordPad on Windows 7

Fig. 5 Web-based remote SSH terminal on Windows 7

REFERENCES
[1] Datta, Anindya. "Method and apparatus for performing application

virtualization." U.S. Patent Application No. 10/837,247.
[2] Yan, Li. "Development and application of desktop virtualization

technology." Communication Software and Networks (ICCSN), 2011
IEEE 3rd International Conference on. IEEE, 2011.

[3] Tang, Chang Bin, and Fen Zhou. "Generalized application virtualization
method for business use on the web and the mini server using this
method." U.S. Patent Application No. 11/830,493.

[4] Lai, Guangda, Hua Song, and Xiaola Lin. "A service based lightweight
desktop virtualization system." Service sciences (ICSS), 2010
international conference on. IEEE, 2010.

[5] Jang, Su Min, Won Hyuk Choi, and Won Young Kim. "Client rendering

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:11, No:12, 2017

1303International Scholarly and Scientific Research & Innovation 11(12) 2017 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

1,
 N

o:
12

, 2
01

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

08
31

5.
pd

f

method for desktop virtualization services." ETRI Journal 35.2 (2013):
348-351.

[6] Lee, HyungJik, and JeunWoo Lee. "Design for management software of
desktop virtualization solutions." Information and Communication
Technology Convergence (ICTC), 2010 International Conference on.
IEEE, 2010.

[7] R. A. Meyer and L. H. Seawright, “A Virtual Machine Time-Sharing
System,” IBM Systems Journal, vol. 9, no. 3, 1970.

[8] R. P. Goldberg, “Architecture of Virtual Machines, “National Computer
Conference Proceedings, AFIPS Press, vol. 42, pp. 309-318, June 1973.

[9] Microsoft RemoteApp,
http://technet.microsoft.com/en-us/library/cc755055.aspx.

[10] Citrix XenDesktop, http://www.citrix.com/xenapp, 22/09/2017.
[11] Remote Desktop Protocol (RDP) Features and Performance, Microsoft

Corporation, Jun. 2000.
[12] Cvetanov, Konstantin. Getting Started with Citrix XenApp 7.6. Packt

Publishing Ltd, 2015.
[13] HDX technologies for optimizing application and desktop delivery,

https://www.citrix.com/products/xenapp-xendesktop/hdx-technologies.ht
ml, 22/09/2017.

[14] Sefraoui, Omar, Mohammed Aissaoui, and Mohsine Eleuldj.
"OpenStack: toward an open-source solution for cloud computing."
International Journal of Computer Applications 55.3 (2012).

[15] Libvirt: The virtualization API, https://libvirt.org/, 22/09/2017.
[16] Wargolet, Steve. Google Web Toolkit. Technical report 12. University of

Wisconsin-Platterville Department of Computer Science and Software
Engineering, 2011.

[17] NCHC Formosa 5 Cloud Cluster. http://formosa5.nchc.org.tw/
[18] NCHC, National Center for High-performance Computing.

http://www.nchc.org.tw/, 22/09/2017.
[19] Velte, Anthony, and Toby Velte. Microsoft virtualization with Hyper-V.

McGraw-Hill, Inc., 2009.
[20] FreeRDP - a free remote desktop protocol client.

http://www.freerdp.com/, 22/09/2017.
[21] LibVNC, https://github.com/LibVNC, 22/09/2017.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:11, No:12, 2017

1304International Scholarly and Scientific Research & Innovation 11(12) 2017 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

1,
 N

o:
12

, 2
01

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

08
31

5.
pd

f

