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Abstract—Robotic rovers which are designed to work in
extra-terrestrial environments present a unique challenge in terms
of the reliability and availability of systems throughout the mission.
Should some fault occur, with the nearest human potentially millions
of kilometres away, detection and identification of the fault must
be performed solely by the robot and its subsystems. Faults in
the system sensors are relatively straightforward to detect, through
the residuals produced by comparison of the system output with
that of a simple model. However, faults in the input, that is, the
actuators of the system, are harder to detect. A step change in
the input signal, caused potentially by the loss of an actuator,
can propagate through the system, resulting in complex residuals
in multiple outputs. These residuals can be difficult to isolate or
distinguish from residuals caused by environmental disturbances.
While a more complex fault detection method or additional sensors
could be used to solve these issues, an alternative is presented here.
Using inverse simulation (InvSim), the inputs and outputs of the
mathematical model of the rover system are reversed. Thus, for a
desired trajectory, the corresponding actuator inputs are obtained.
A step fault near the input then manifests itself as a step change
in the residual between the system inputs and the input trajectory
obtained through inverse simulation. This approach avoids the need
for additional hardware on a mass- and power-critical system such
as the rover. The InvSim fault detection method is applied to a
simple four-wheeled rover in simulation. Additive system faults and
an external disturbance force and are applied to the vehicle in turn,
such that the dynamic response and sensor output of the rover
are impacted. Basic model-based fault detection is then employed
to provide output residuals which may be analysed to provide
information on the fault/disturbance. InvSim-based fault detection
is then employed, similarly providing input residuals which provide
further information on the fault/disturbance. The input residuals are
shown to provide clearer information on the location and magnitude
of an input fault than the output residuals. Additionally, they can
allow faults to be more clearly discriminated from environmental
disturbances.

Keywords—Fault detection, inverse simulation, rover, ground
robot.

I. Introduction

PLANETARY rovers are unique among the many robotic

explorers humanity has launched into space in that they

alone have lived and worked for months on other worlds,

gathering crucial information and transmitting it to Earth.

Although the first successful lunar rover mission was preceded

by the Apollo 11 landing [1], successful rover missions to

Mars have been occurring for almost two decades: well in

advance of any manned mission to the red planet. In addition
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to the lack of human assistance, planetary exploration also

offers two additional challenges [2]. First, the transmission

latency between the planet and Earth can make remote control

of the rover slow at best or completely infeasible at worst. This

highlights the need for at least semi-autonomous capability in

the rover. Second, many planetary environments present their

own problems such as unshielded solar radiation, rough terrain

and poor visibility.

The rover must be designed to deal with both these

environmental factors and its mission requirements. This

clearly results in a vehicle of great complexity, with

consideration in the design for not only known variables,

but also for predicted variables. Thus, while the rover must

contend with the challenges of its mission and environment,

it must also handle problems within its own hardware and

software: particularly the occurrence and impact of faults.

The detection of and reaction to faults is considered in the

field of fault detection, isolation and recovery (FDIR). The first

stage in the FDIR process, fault detection, concerns identifying

when a fault has occurred. The second, fault isolation or

diagnosis, involves locating the fault within the system and

providing information on it such that it can be compensated

for during the recovery phase. The FDIR technique of

model-based fault detection and isolation is a popular method

for detecting and locating such faults. In its simplest form,

it involves comparing the outputs of a fault-afflicted system

with the outputs of a fault-free mathematical model of the

system [3]. The error between the true outputs and the

model outputs is known as the residual. Both systems are

supplied with identical input signals, thus any discrepancies

in the residual may be attributed to any combination of the

following phenomena: Unmodelled behaviours; environmental

or internal disturbances; and system faults. Output residuals

are typically sufficient when detecting and isolating sensor

faults at the output. Hardware-based faults earlier in the

system, however, can manifest in multiple output residuals,

making these faults more difficult to isolate. State observers,

output observers and the Kalman filter may be used to

determine other system variables from which to generate

residuals [3]. These residuals may then provide clearer results

on the fault location and severity. Alternatively, more complex

methods may be used to detect and isolate faults, such as

particle filters [4], [5].

A set of variables not typically used in residual generation

are the system inputs. This is because they are usually required

as information by any model-based fault detection method.
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One method by which input residuals may be generated is

inverse simulation (InvSim). This is because InvSim receives

the output trajectory (or desired trajectory) of a system and

provides the corresponding input signals. The true system

inputs are thus not required. The inputs produced by InvSim

are then compared to the true system inputs to provide input

residuals. Faults earlier in the system should be easier to

isolate using input rather than output residuals. This concept

is investigated in this paper by applying, in sequence, a sensor

fault, actuator fault and disturbance to a simulated planetary

rover.

The structure of the paper is as follows. Section II describes

the process of InvSim and its application to fault detection in

greater detail. Section III describes the mathematical model

of the rover. Section IV describes simulation testing of the

fault detection and isolation algorithm. This testing utilises

the model of Section III to both represent the real system and

the software model used in model-based and InvSim-based

FDIR. The only difference between the models is the presence

of faults in the model representing the real system. Finally,

Section V states the conclusions of the research.

II. Overview of Inverse Simulation and Application to Fault

Detection

The intended goal of inverse simulation is intuitive. Where

a conventional simulation employs a system model which

receives inputs and provides a corresponding set of outputs,

InvSim does the opposite. For a given set of outputs, InvSim

attempts to determine the inputs which will result in the system

producing these outputs. This technique is most often used

in the context of identifying trajectories which a mechanical

system can feasibly follow. Examples of this application

include the helicopter [6]–[9], autonomous underwater vehicle

[10], unmanned aerial vehicle [11] and robotic rover [12],

[13]. It differs from analytical approaches to system inversion

such as non-linear dynamic inversion in that it may consider

systems which contain discontinuities or are not control-affine.

InvSim has also been used in model validation [8], [9].

Inverse simulation essentially operates as follows. A

temporal loop iterates in discrete time intervals in much the

same way a conventional simulation does. Thus, each iteration

k of the loop describes a discrete point in time tk. Where a

conventional simulation would determine the state derivatives

at each time step and then integrate them to obtain the states

and outputs of the next increment, InvSim instead uses a

Newton-Raphson algorithm to determine the states and inputs

from the outputs. This algorithm operates on a non-linear

equation of the form y(tk+1) = F(x(tk),u(tk)) and attempts to

find a solution for u(tk) which results in a negligible error

between the output y(tk+1) and a desired output yd(tk+1). The

Newton-Raphson algorithm iterates until this error is below

a specified tolerance, at which point the InvSim algorithm

progresses to the next time step.

A number of InvSim algorithms exist. The method

employed in this paper is the Integration algorithm, so named

because it employs numerical integration to obtain the outputs

from the inputs on each iteration of the Newton-Raphson

Read trim conditions x(0) and u(0)
T = number of time points

k = current time point
n = Newton-Raphson iteration

Define time history of manoeuvre
yd(tk), k = 0 to T

k = 0

n = 1

ẋ(tk)n = f (x(tk),u(tk)n)

x(tk+1)n =

∫ tk+1

tk
ẋ(tk)n dt

y(tk+1)n = g (x(tk+1)n)

ye(tk+1)n = y(tk+1)n − yd(tk+1)

Is ye < tol?

J =
dy(tk+1)n

du(tk)n

Solve
J ue(tk)n = ye(tk+1)n for ue

u(tk)n+1 = u(tk)n − ue(tk)n

n = n + 1

Is k = T?

k = k + 1

Exit

No

Yes

No

Yes

Fig. 1 Genisa inverse simulation algorithm

loop. More specifically, the methodology used is the Genisa
algorithm [14]. This algorithm is best described visually,

shown in Fig. 1.

The application of InvSim described in this paper differs

from the aforementioned studies in that the desired trajectory

supplied to the InvSim algorithm is not a path of unknown

feasibility. Just as the pairing of parity equations with a

conventional model uses the inputs of the actual system to

obtain a residual between real output and modelled output,

their use with InvSim provides a residual between real inputs

and InvSim-derived inputs from supplying the outputs of the

actual system. Just as faults near the output are more easily

detected than those near the input when using parity equations

on a conventional model, the reverse is true when using

InvSim.

This approach may be proven mathematically for a linear

system. Consider a system described by the transfer function

G(s) =
y(s)

u(s)
(1)

The system is subject to a fault at the input fu or a fault at

the output fy. The output y of the system is thus related to the

input by u by the expression

y(s) = G(s) [u(s) + fu(s)] + fy(s) (2)
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G(s)

Gm(s)

u

fu

Fd
fy

y
+

ym

−
ry

Fig. 2 Residual generation using system and model outputs

G(s)

G−1
m (s)

u

fu

Fd
fy

y

um

+ −
ru

Fig. 3 Residual calculation using estimated input from model in InvSim

Model-based fault detection using output residuals,

illustrated in Fig. 2, uses a model of the system Gm to provide

an expected output ym for the same input. The output residual

may thus be calculated

ry(s) = y(s) − ym(s)

=
[
G(s) [u(s) + fu(s)] + fy(s)

]
−Gm(s)u(s)

= Gm(s) fu(s) + fy(s)

(3)

for the case where the model exactly matches the system, that

is Gm(s) = G(s). Where only an output fault has occurred, the

output residual is simply ry(s) = fy(s), making detection and

isolation of the fault a trivial problem. Where only an input

fault has occurred, the residual is ry(s) = G(s) fu(s). This is

clearly less trivial to solve, as the residual describes the fault

as propagated through the system dynamics.

Consider the approach used in InvSim-based fault detection,

illustrated in Fig. 3. The numerical InvSim process may be

represented analytically by um(s) = G−1
m (s) y(s). The system

is similarly solved for the input. Considering again an input

fault only, the input residual may be defined as

ru(s) = um(s) − u(s)

=
[
G−1

m (s) y(s)
]
−
[
G−1(s) y(s) − fu(s)

]
=
[
G−1

m (s) −G−1(s)
]

y(s) + fu(s)

= fu(s)

(4)

for the case where Gm(s) = G(s). The input residual

thus measures the input fault directly, making location and

estimation of severity a trivial issue.

Both Figs. 2 and 3 also show the presence of a disturbance

Fd. The influence of this disturbance on the system is described

in the next section, while its effects on the fault detection and

isolation process are highlighted in Section IV.

Fig. 4 Lynxmotion 4WD3 rover

Fig. 5 World and rover body frames of reference. Note that roll and pitch
variables are omitted as the rover operates on flat, level terrain

III. RoverModel

A simple mathematical model of a robotic rover is used

in both the simulation which represents the real system and

the fault detection solutions. The system model and fault

detection model differ only in that the former can include

faults while the latter neglects them. This model includes

actuator dynamics, damping forces and wheel slippage. The

modelled environment is very simple, considering a flat, level

terrain. The model is validated against experimental data from

a Lynxmotion 4WD3 rover (Fig. 4), as described in [15].

A. Rigid Body Model

The rover is represented as a rigid body with position

r = [x, y, z]T and orientation η = [φ, θ, ψ]T in an inertially

fixed reference frame W, shown in Fig. 5. The orientation

of W is largely arbitrary, aside from the requirement that zW
points in the direction of the local gravity vector. A body-fixed

frame B is defined such that its origin is at the centre of mass

of the rover, the xB-axis is positive in the nominal forward

direction of the vehicle, yB is positive in the starboard direction

and zB is positive downward and collinear with zW when the

rover is on level terrain.

The inertial position of the rover is related to its velocity

v = [u, v,w]T in B by

ṙ = RWB v (5)
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The direction cosine matrix RWB describes the

transformation from B to W and is given by

RWB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

where sφ denotes sin φ, cθ denotes cos θ and so forth. The

reverse transformation, fromW to B is simply obtained from

the transpose, that is RBW =
(
RWB
)T

.

The orientation of the rover is similarly related to its angular

velocity ω = [p, q, r]T , also described in B. This relationship

is
η̇ = Rηω

where Rη =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 sin φ tan θ cos φ tan θ
0 cos φ − sin φ
0 sin φ sec θ cos φ sec θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

The rigid body response of the rover is obtained from

the Newton-Euler formalism, where the linear and angular

velocities of a rotating frame of reference, here the body

frame B, are related to a net force and moment, respectively.

Rearranging the Newton-Euler rigid body equations such that

they resemble a non-linear state-space model yields

v̇ =
1

m
F − ω × v

ω̇ = I−1 (M − ω × Iω)
(8)

where m is the rover mass and I is the inertia tensor. The net

force F and net moment M are both described in B.

B. Force and Moment Contributions

The force and moment are comprised of propulsive

(p), aerodynamic (a), frictional ( f ) and disturbance (d)

components, that is

F = Fp + Fa + F f + Fd

M =Mp +M f +Md
(9)

The composition of these elements are described as follows.

1) Propulsion: A propulsive component is produced by

the driving force of the wheels, as shown in Fig. 6. This is

also used to control the vehicle; surge velocity by the net

force and heading by the differential between each side. Each

motor j produces a torque τ j, j ∈ {1, 2, 3, 4}, as described in

Section III-C. The force Fw, j produced by each wheel is simply

obtained with consideration of the wheel radius Rw, giving

Fw, j =
τ j

Rw
(10)

The net propulsive force is then

Fp =

4∑
i= j

Fw, j ·
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos β
sin β

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (11)

where β is the slip angle [16]. It is obtained through

consideration of the elements of the velocity vector, that is

v = [u, v,w]T .

β = arcsin

(
v
‖v‖
)

(12)

Fig. 6 Rover plan view with wheel forces and numbering

where ‖v‖ is the magnitude of the speed vector.

The differential forces in the wheels give rise to a yawing

moment. As each wheel has identical moment arm rw about

the yaw axis, the net propulsive moment may be given by

Mp =

4∑
i= j

rwFw, jd j · ẑ (13)

where d j is an element of d = [1, 1,−1,−1]T and determines

the direction of the yawing moment produced by each wheel

and ẑ is the unit direction vector the local z-axis.

2) Aerodynamic Drag: The rover from which the model

is derived is designed to operate in Earth’s atmosphere, thus

aerodynamic drag will occur. The drag force resists the motion

of the rover and is thus dependent on the magnitude and

direction of the speed vector, giving

Fa = −1

2
ρCd‖v‖2 ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ax cos β
Ay sin β

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (14)

where ρ is the atmospheric density, Cd is the aerodynamic

drag coefficient and Ax and Ay are the surface areas projected

in the x- and y-axes, respectively. Torsional drag is assumed

to be negligible.

3) Friction: As the rover uses wheels for locomotion,

rolling friction must be considered [15]. The rolling friction

is dependent on the weight of the rover, the velocity in each

degree of freedom and a frictional coefficient σ. The resulting

frictional forces and moments are then given by

F f = −mg

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
σx 0 0

0 σy 0

0 0 σz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ v

M f = −mgrw

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
σp 0 0

0 σq 0

0 0 σr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ω
(15)

4) Disturbance Force: A disturbance force is included in

the system model but not the software model used by the fault

detection algorithms. This force Fd acts at a position rd with

respect to the body-fixed frame B, as illustrated in Fig. 7. The

consequent disturbance torque is thus simply Md = rd × Fd.
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Fig. 7 Disturbance force acting at point on rover body

C. Motor Dynamics

The Lynxmotion 4WD3 employs four DC motors, wired

in parallel such that motors on a single side receive the

same voltage. There are consequently two control inputs,

corresponding to each side of the rover.

The dynamics of the motor are composed of electrical and

mechanical components. The electrical component describes

the behaviour of the current i j in the circuit of a motor

j = {1, 2, 3, 4} in response to a voltage input. This is given

by

i̇ j =
1

L

(
Vj − Ri j − KeΩ j

)
(16)

where L is the inductance in the circuit, R is the resistance and

Ke is the EMF constant. The input voltages are paired such

that V1 = V2 = Vl and V3 = V4 = Vr, where Vl and Vr are

the voltages controlling the left and right motors of the rover,

respectively. The electrical component of the motor interacts

with the mechanical component through the current and the

motor speed Ω j, the dynamics of which are described by

Ω̇ j =
1

Jm

(
Kti j − bΩ j − ξΩ j

)
(17)

where Jm is the motor moment of inertia, Kt is the torque

constant, b is the viscous torque constant and ζ is the base

friction coefficient, representing the friction between the wheel

and the ground.

Each motor generates a torque which is proportional to the

current running through it and is given by

τ j = Kti jη j (18)

Here, η is the efficiency of the motor. It is identified through

empirical testing to have the form η j = αi j + γ, where α and

γ are constants. The resulting forward force is then given by

(10).

D. Control and Guidance System

A simple feedback control system is used to direct the

rover through discrete waypoints. For a given waypoint

rd = [xd, yd, 0]T , the desired surge velocity ud is obtained

using a simple proportional controller on the distance error in

the surge axis xB

ud = Kp,xy
[
(xd − x) cosψ + (yd − y) sinψ

]
(19)

where the surge velocity command is limited to the range

0 ≤ ud ≤ 0.4 m s−1.

TABLE I
Rigid-Body Properties

Property Symbol Value Unit

Effective area in x-axis Ax 0.0316 m2

Effective area in y-axis Ay 0.0448 m2

Drag coefficient Cd 0.89 –

Moment of inertia about x-axis Ix 0.0140 kg m2

Moment of inertia about y-axis Iy 0.0252 kg m2

Moment of inertia about z-axis Iz 0.0334 kg m2

Mass m 2.148 kg
Radius of wheel Rw 0.0635 m
Moment arm of wheel rw 0.1245 m
Coefficient of friction in x σx 0.22 –
Coefficient of friction in y σy 1.00 –
Coefficient of friction in z σz 0.30 –
Coefficient of friction about x σp 0.35 –
Coefficient of friction about y σq 0.44 –
Coefficient of friction about z σr 0.18 –

Pseudo-controls are used to shape the response in each

controllable degree of freedom before they are mixed to

provide the motor voltage signals. The surge pseudo-input

usurge is determined by the proportional-integral (PI) law

usurge = Kp,u (ud − u) + Ki,u

∫
(ud − u) dt (20)

while the yaw pseudo-input is specified by a PI law with

velocity feedback on the heading rate r

uyaw = Kp,ψ(ψd − ψ) + Ki,ψ

∫
(ψd − ψ) dt − Kd,ψr (21)

where ψd is the desired heading of the rover, obtained from

the relative positions of the rover and waypoint by

ψd = arctan
yd − y
xd − x

(22)

To minimise aggressive turning, the difference between the

heading command and current heading is limited to the range

−10◦ ≤ (ψd − ψ) ≤ 10◦.
The voltage commands to each pair of motors are obtained

from the pseudo-controls by solving the relationship[
Vl

Vr

]
=

[
1 1

rw −rw

]−1 [usurge

uyaw

]
(23)

IV. Simulation Testing of Fault DetectionMethods

It is clear that the rover model described in the previous

section is not linear. This is in contrast to the generic linear

model given in (2) and used to justify the InvSim approach

to input residual generation. The ability to generate input

residuals and use them in fault detection and isolation is thus

investigated in simulation, using the Genisa InvSim algorithm.

The rover vehicle is represented by the model in Section

III and is susceptible to both faults and disturbances. This

model is denoted the system. The software model used in

the model-based and InvSim-based fault detection algorithms

is identical to this but lacks any faults or disturbances. This

is simply denoted the model. Both models use the properties

described in Tables I–III.

Two cases are considered. First, an additive output fault is

applied to the rover system. Output residuals are generated

using model-based fault detection and used to isolate the
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TABLE II
Motor Properties

Property Symbol Value Unit

Viscous torque b 0.008 N m

Moment of inertia of motor Jm 0.005 kg m2

Torque constant Kt 0.35 N m A−1

EMF constant Ke 0.35 V rad−1 s−1

Inductance of circuit L 0.1 H
Resistance in circuit R 4 Ω

Gradient for efficiency curve α −0.133 A−1

Offset for efficiency curve γ 0.6 –

Base friction on wheel ξ 0.002 N m s rad−1

TABLE III
Controller Gains

Property Symbol Value

Position controller proportional gain Kp,xy 1
Velocity controller proportional gain Kp,u 10
Velocity controller integral gain Ki,u 0.1
Heading controller proportional gain Kp,ψ 4
Heading controller integral gain Ki,ψ 0
Heading controller velocity gain Kd,ψ 1

location and severity of the fault. This provides the empirical

proof for (3). The second case considers an input fault. Input

residuals are generated using InvSim and their abilities to

detect and isolate the fault compared with those of output

residuals.

The rover is simulated as operating on a flat, level terrain.

This has the effect of reducing the rigid-body motion to three

degrees of freedom: surge, sway and yaw. The outputs of the

system are thus taken to be perfect measurements of the states

in these directions, that is

y = [u, v, r]T (24)

The rover is directed along a path between discrete waypoints

by the feedback control system described in Section III-D.

When a fault or disturbance occurs, this has the effect of

perturbing the rover’s motion along the desired path. The path

of the rover is shown in Fig. 8 for fault-free motion, a sensor

fault, an actuator fault and a disturbance force. It is apparent

in this instance that the faults and disturbance have a small

effect on the vehicle motion which is largely compensated for

by the controller. It is still of import, however, to detect and

isolate the faults in the event that they are more severe and

have greater impact on the closed-loop response.

A. Case 1: Fault in Heading Rate Output

An additive fault in the heading rate output fr = 15◦ s−1 is

simulated as occurring at T f = 20 s. With reference to (2),

the output fault vector is then fy = [0, 0, fr]T . Model-based

fault detection is used to provide a model output ym which is

compared to the simulated system output y in Fig. 9. From

(3), the heading rate output residual rr will be of the form

rr =

⎧⎪⎪⎨⎪⎪⎩
0 if t < T f

fr if t ≥ T f
(25)

This result is validated in Fig. 10, which shows a step

change in rr from zero to 15◦ s−1 after 20 s. The residuals for

No faults
Sensor fault
Actuator fault
Disturbance

-0.500.511.522.533.544.5
x [m]

-0.5

0

0.5

1

1.5

2

2.5

y
[m

]

Fig. 8 Comparison of trajectories for rover with no faults, a sensor fault and
an actuator fault

System
Model
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Time [s]

-0.6
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0

0.2
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0.6
r 
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eg

/s
]

Fig. 9 Comparison of system heading rate measurement with equivalent
output from mathematical model for a fault in the heading rate output

the surge and sway velocities are both zero for the duration

of the simulation, as expected, and are not shown.

The absence of any non-zero residual in the surge and sway

outputs, combined with the discontinuous shape of the heading

rate residual, provides a strong case that a single fault isolated

to the heading rate output has occurred. The heading rate

output fault is thus trivial to detect using a static threshold.

It may then be isolated and recovered from, by applying a

correction of −15◦ s−1 to the heading rate output channel.

0 5 10 15 20 25 30
Time [s]

0

5

10

15

20

r r [d
eg

/s
]

Fig. 10 Residual in heading rate output with fault in same channel
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B. Case 2: Fault in Voltage Signal Received by Left-Hand
Motors

An additive fault in the left-hand actuator input fVl = 1 V

is simulated as occurring at T f = 20 s. The input fault vector

is thus fu = [ fVl, 0]T . Using model-based fault detection, (3)

shows that the output residuals will be of the form

ry =

⎧⎪⎪⎨⎪⎪⎩
[0, 0, 0]T if t < T f

F(fu, t) if t ≥ T f
(26)

where F describes the propagation of the input fault through

the system.

The output residuals resulting from simulation testing of

the input fault are shown in Fig. 11. For comparison, these

residuals are plotted against those resulting from a separate

simulation with a disturbance force Fd = [0.4, 0, 0]T N, applied

at position rd = [0,−0.1, 0]T m and time Td = 20 s. It is

apparent that the single input fault manifests itself in all three

output residuals, making it difficult to isolate. The disturbance

similarly produces a response in all three residuals. While it

is clear from viewing the residuals that the effects of the fault

and disturbance differ, a static threshold would be unable to

discriminate between them. Additionally, there is no indication

as to the magnitude of the fault, unlike the case with the output

fault.

In an effort to yield further information on the input fault

and disturbance, InvSim is used to generate input residuals.

From (4), it is anticipated that the input residuals will be of

the form

ru =

⎧⎪⎪⎨⎪⎪⎩
[0, 0]T if t < T f

fu if t ≥ T f
(27)

Fig. 12 shows the results of the input residual generation

using InvSim. It is clear that neither input residual satisfies the

conditions describes in (27). Both residuals show perturbations

at approximately 0.5 and 15.5 seconds. These perturbations

correspond to manoeuvres by the rover at the beginning of

the simulation and as it passes through a waypoint. They may

therefore be attributed to sudden changes in the rover inputs

and outputs. Smoothness in the trajectory of the system is

an important consideration in InvSim [9]. A discontinuous

path through the waypoints could thus be responsible for these

perturbations.

These perturbations may therefore be neglected in favour

of the clear discontinuity occurring at the 20 s mark in rVl.

Again, this is not a perfect step change as suggested by (27).

However, accounting for the presence of further perturbations,

the residual can be stated to quite clearly show both the shape

and magnitude of the fault fVl. Conversely, the residual rVr

continues to demonstrate only small perturbations after the

occurrence of the fault. In this case, a small static threshold

on each input residual would indicate the presence of a fault

in the left-hand actuators only, while the shape of the residual

argues that the fault has occurred at the input itself. Compare

these results to the effects of a disturbance force, shown also

in Fig. 12. The left-hand residual rVl shows a longer transient

phase for the disturbance than the fault, indicating that it does

not occur at the input, but later in the system. The right-hand

residual rVr also shows a small persistent change after the

Actuator fault
Disturbance

0 5 10 15 20 25 30
Time [s]

0

0.02

0.04

0.06

0.08

0.1

r u [m
/s

]

(a) Residual in surge velocity output.

0 5 10 15 20 25 30
Time [s]
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0

1
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]

10-3

(b) Residual in sway velocity output.

0 5 10 15 20 25 30
Time [s]

0

5

10

15

r r [d
eg

/s
]

(c) Residual in heading rate output.

Fig. 11 Output residuals generated using conventional model-based fault
detection on system with input fault

disturbance has occurred, indicating that the disturbance is

also coupled with the right-hand actuators. The presence of

a persistent non-zero residual in rVr may also be used to

discriminate the disturbance from the input fault.

C. Comparison of Methodologies

These results may be summarised by constructing a table

of residuals, shown in Table IV. Here 0 denotes no residual,

+ denotes a small positive residual and ++ denotes a large

positive residual. For the output fault fr, it is immediately

obvious that the fault affects the heading rate output in

isolation and may therefore be stated to occur in that output.

For the input fault, large residuals are generated in both surge

velocity and heading rate outputs, providing no clear indication

for the location of the fault. Conversely, the input residuals
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Actuator fault
Disturbance
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(a) Residual in left-hand motor voltage signal
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 [V

]

(b) Residual in right-hand motor voltage signal.

Fig. 12 Residuals from InvSim-based fault detection on system with actuator
fault

TABLE IV
Residuals for Both Sensor and Actuator Faults

fr fVl Fd

ru 0 ++ ++
rv 0 + +
rr ++ ++ ++

rVl ++ ++
rVr 0 +

clearly isolate the fault to the left-hand actuators. Finally, while

the output residuals have identical entries in the table for the

input fault and disturbance, the input residuals do not. This

allows use of the input residuals to discriminate between an

input fault and environmental disturbance, demonstrating the

benefit of inverse simulation in this application.

V. Conclusion

It is clear from the previous section that inverse simulation

may be used to generate input residuals for a system, in a

manner similar to the generation of output residuals using

a system model. These input residuals have been shown to

provide clear and unambiguous information on the location,

severity and time of a fault at the input to the rover

system. In contrast, the output residuals are unable to provide

much information beyond the fact that a fault has occurred

somewhere in the system prior to the output. While advanced

techniques such as structured residuals or adaptive thresholds

may allow isolation of an input fault using the system outputs,

InvSim provides a conceptually simpler approach: an additive

fault at the input manifests in the residual as a step change

with magnitude equal to that of the fault. It is then far simpler

to draw a conclusion on the nature of this fault from the input

residuals shown in Fig. 12 than the output residuals given

in Fig. 11. Additionally, the input residuals generated using

InvSim may be combined with any output residuals to provide

more comprehensive information on any faults or disturbances

in the system. Table IV highlights this benefit to a degree.
With reference to the use of inverse simulation specifically,

(4) demonstrated the analytical proof of detecting faults at

the input using input residuals. In simple systems, obtaining

the inverted model G−1
m (s) may be trivial. In the case of a

complex, non-linear system such as the presented rover model,

the system may only be inverted numerically. The Genisa
InvSim algorithm provides a stable, generic method by which

to achieve this inversion.
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