Search results for: mechanical responses
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1712

Search results for: mechanical responses

1592 Combined Effect of Cold Rolling and Heat Treatment on the Mechanical Properties of Al-Ti Alloy

Authors: Adeosun S. Oluropo, Sekunowo O. Israel, Talabi S. Isaac

Abstract:

This study investigated the combined effect of cold rolling and heat treatment on the mechanical properties of Al-Ti alloy. Samples of the alloy are cast in metal mould to obtain 0.94-2.19wt% mixes of titanium. These samples are grouped into untreated (as-cast) and those that are cold rolled to fifty percent reduction, homogenized at 5000C and soaked for one hour. The cold rolled and heat treated samples are normalized (RTn) and quench-tempered (RTq-t) at 1000C. All these samples are subjected to tensile, micro-hardness and microstructural evaluation. Results show remarkable improvement in the mechanical properties of the cold rolled and heat treated samples compared to the as-cast. In particular, the RTq-t samples containing titanium in the range of 1.7-2.2% demonstrates improve tensile strength by 24.7%, yield strength, 28%, elastic modulus, 38.3% and micro-hardness, 20.5%. The Al3Ti phase being the most stable precipitate in the α-Al matrix appears to have been responsible for the significant improvement in the alloy’s mechanical properties. It is concluded that quench and temper heat treatment is an effective method of improving the strength-strain ratio of cold rolled Al-.0.9-2.2%Ti alloy.

Keywords: Aluminum-titanium alloy, heat treatment, mechanical properties, precipitate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2754
1591 A Variety of Meteorological and Geographical Characteristics Effects on Watershed Responses to a Storm Event

Authors: Wen Hui Kuan, Chia Ling Chang, Pei Shan Lui

Abstract:

The Chichiawan stream in the Wulin catchment in Taiwan is the natural habitat of Formosan landlocked salmon. Human and agriculture activities gradually worsen water quality and impact the fish habitat negatively. To protect and manage Formosan landlocked salmon habitat, it is important to understand a variety land-uses affect on the watershed responses to storms. This study discusses watershed responses to the dry-day before a storm event and a variety of land-uses in the Wulin catchment. Under the land-use planning in the Wulin catchment, the peak flows during typhoon events do not have noticeable difference. However, the nutrient exports can be highly reduced under the strategies of restraining agriculture activities. Due to the higher affinity of P for soil than that of N, the exports of TN from overall Wuling catchment were much greater than Ortho-P. Agriculture mainly centralized in subbasin A, which is the important source of nutrients in nonpoint source discharge. The subbasin A supplied about 26% of the TN and 32% of the Ortho-P discharge in 2004, despite the fact it only covers 19% area of the Wuling catchment. The subbasin analysis displayed that the agricultural subbasin A exports higher nutrients per unit area than other forest subbasins. Additionally, the agricultural subbasin A contributed a higher percentage to total Ortho-P exports compares to TN. The results of subbasin analysis might imply the transport of Ortho-P was similar to the particulate matter which was mainly influenced by the runoff and affected by the desorption from soil particles while the TN (dominated as nitrate-N) was mainly influenced by base-flow.

Keywords: Chiachiawan stream, Formosan landlocked salmon, modeling, typhoon, watershed response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286
1590 Aging and Mechanical Behavior of Be-Treated 7075 Aluminum Alloys

Authors: Mahmoud M. Tash, S. Alkahtani

Abstract:

The present study was undertaken to investigate the effect of pre-aging and aging parameters (time and temperature) on the mechanical properties of Al-Mg-Zn (7075) alloys. Ultimate tensile strength, 0.5% offset yield strength and % elongation measurements were carried out on specimens prepared from cast and heat treated 7075 alloys. Aging treatments were carried out for the as solution treated (SHT) specimens (after quenching in warm water). The specimens were aged at different conditions; Natural aging was carried out at room temperature for different periods of time. Double aging was performed for SHT conditions (pre-aged at different time and temperature followed by high temperature aging). Ultimate tensile strength, yield strength and % elongation as a function of different pre-aging and aging parameters are analyzed to acquire an understanding of the effects of these variables and their interactions on the mechanical properties of Be-treated 7075 alloys.

Keywords: Duplex Aging Treatment, Mechanical Properties, Al-Mg-Zn (7075) alloys.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5724
1589 Mechanical Properties Enhancement of 66/34Mg-Alloy for Medical Application

Authors: S. O. Adeosun, O. I. Sekunowo, O. P. Gbenebor, W. A. Ayoola, A. O. Odunade, T. A. Idowu

Abstract:

Sand cast samples of the as-received 66/34Mg-Al alloy were first homogenized at 4900C and then divided into three groups on which annealing, normalising and artificial ageing were respectively carried out. Thermal ageing of the samples involved treatment at 5000C, soaked for 4 hours and quenched in water at ambient temperature followed by tempering at 2000C for 2 hours. Test specimens were subjected to microstructure and mechanical analyses and the results compared. Precipitation of significant volume of stable Mg17Al12 crystals in the aged specimen’s matrix conferred superior mechanical characteristics compared with the annealed, normalized and as-cast specimens. The ultimate tensile strength was 93.4MPa with micro-hardness of 64.9HRC and impact energy (toughness) of 4.05J. In particular, its Young modulus was 10.4GPa which compared well with that of cortical (trabecule) bone’s modulus that varies from 12-17GPa.

Keywords: Mg-Al alloy, artificial ageing, medical implant, cortical bone, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
1588 Optimal Combination for Modal Pushover Analysis by Using Genetic Algorithm

Authors: K. Shakeri, M. Mohebbi

Abstract:

In order to consider the effects of the higher modes in the pushover analysis, during the recent years several multi-modal pushover procedures have been presented. In these methods the response of the considered modes are combined by the square-rootof- sum-of-squares (SRSS) rule while application of the elastic modal combination rules in the inelastic phases is no longer valid. In this research the feasibility of defining an efficient alternative combination method is investigated. Two steel moment-frame buildings denoted SAC-9 and SAC-20 under ten earthquake records are considered. The nonlinear responses of the structures are estimated by the directed algebraic combination of the weighted responses of the separate modes. The weight of the each mode is defined so that the resulted response of the combination has a minimum error to the nonlinear time history analysis. The genetic algorithm (GA) is used to minimize the error and optimize the weight factors. The obtained optimal factors for each mode in different cases are compared together to find unique appropriate weight factors for each mode in all cases.

Keywords: Genetic Algorithm, Modal Pushover, Optimalweight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
1587 The Appraisal of Construction Sites Productivity: In Kendall’s Concordance

Authors: Abdulkadir Abu Lawal

Abstract:

For the dearth of reliable cardinal numerical data, the linked phenomena in productivity indices such as operational costs and company turnovers, etc. could not be investigated. This would not give us insight to the root of productivity problems at unique sites. So, ordinal ranking by professionals who were most directly involved with construction sites was applied for Kendall’s concordance. Responses gathered from independent architects, builders/engineers, and quantity surveyors were herein analyzed. They were responses based on factors that affect sites productivity, and these factors were categorized as head office factors, resource management effectiveness factors, motivational factors, and training/skill development factors. It was found that productivity is low and has to be improved in order to facilitate Nigerian efforts in bridging its infrastructure deficit. The significance of this work is underlined with the Kendall’s coefficient of concordance of 0.78, while remedial measures must be emphasized to stimulate better productivity. Further detailed study can be undertaken by using Fuzzy logic analysis on wider Delphi survey.

Keywords: Factors, Kendall’s coefficient of concordance, magnitude of agreement, percentage magnitude of dichotomy, ranking variables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 968
1586 Effect of Be, Zr and Heat Treatment on Mechanical Behavior of Cast Al-Mg-Zn-Cu Alloys (7075)

Authors: Mahmoud M. Tash

Abstract:

The present study was undertaken to investigate the effect of aging parameters (time and temperature) on the mechanical properties of Be-and/or Zr- treated Al-Mg-Zn (7075) alloys. Ultimate tensile strength, 0.5% offset yield strength and % elongation measurements were carried out on specimens prepared from cast and heat treated 7075 alloys containing Be and/or Zr. Different aging treatment were carried out for the as solution treated (SHT) specimens (after quenching in warm water). The specimens were aged at different conditions; Natural and artificial aging was carried out at room temperature, 120C, 150C, 180C and 220C for different periods of time. Duplex aging was performed for SHT conditions (pre-aged at different time and temperature followed by high temperature aging). Ultimate tensile strength, yield strength and % elongation data results as a function of different aging parameters are analysed. A statistical design of experiments (DOE) approach using fractional factorial design is applied to acquire an understanding of the effects of these variables and their interactions on the mechanical properties of Be- and/or Zr- treated 7075 alloys. Mathematical models are developed to relate the alloy mechanical properties with the different aging parameters.

Keywords: Casting, Aging Treatment, Mechanical Properties, Al-Mg-Zn (7075) alloys, Be- and/or Zr-Treatment, Experimental Correlation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
1585 Effect of Mechanical Loading on the Delamination of Stratified Composite in Mode I

Authors: H. Achache, Y. Madani, A. Benzerdjeb

Abstract:

The present study is based on the three-dimensional digital analysis by the finite elements method of the mechanical loading effect on the delamination of unidirectional and multidirectional stratified composites. The aim of this work is the determination of the release energy rate G in mode I and the Von Mises equivalent constraint distribution along the damaged area under the influence of several parameters such as the applied load and the delamination size. The results obtained in this study show that the unidirectional composite laminates have better mechanical resistance one the loading line than the multidirectional composite laminates.

Keywords: Delamination, release energy rate, stratified composite, finite element method and ply.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
1584 Comparison and Characterization of Dyneema™ HB-210 and HB-212 for Accelerated UV Aging

Authors: Jonmichael A. Weaver, David A. Miller

Abstract:

Ultra High Molecular Weight Polyethylene (UHMWPE) presents several distinct advantages as a material with a high strength to weight ratio, durability, and neutron stability. Understanding the change in the mechanical performance of UHMWPE due to environmental exposure is key to safety for future applications. Dyneema® HB-210, a 15 µm diameter UHMWPE multi-filament fiber laid up in a polyurethane matrix in [0/ 90]2, with a thickness of 0.17 mm is compared to the same fiber and orientation system, HB-212, with a rubber-based matrix under UV aging conditions. UV aging tests according to ASTM-G154 were performed on both HB-210 and HB-212 to interrogate the change in mechanical properties, as measured through dynamic mechanical analysis and imaged using a scanning electron microscope. These results showed a decrease in both the storage modulus and loss modulus of the aged material compared to the unaged, even though the tan δ slightly increased. Material degradation occurred at a higher rate in Dyneema® HB-212 compared to HB-210. The HB-210 was characterized for the effects of 100 hours of UV aging via dynamic mechanical analysis. Scanning electron microscope images were taken of the HB-210 and HB-212 to identify the primary damage mechanisms in the matrix. Embrittlement and matrix spall were the products of prolonged UV exposure and erosion, resulting in decreased mechanical properties.

Keywords: Composite materials, material characterization, UV aging, UHMWPE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 644
1583 Effect of Y Addition on the Microstructure and Mechanical Properties of Sn-Zn Eutectic Alloy

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

The effect of Yttrium addition on the microstructure and mechanical properties of Sn-Zn eutectic alloy, which has been attracting intensive focus as a Pb-free solder material, was investigated in this study. Phase equilibrium has been calculated by using FactSage® to evaluate the composition and fraction of equilibrium intermetallic compounds and construct a phase diagram. In the case of Sn-8.8Zn eutectic alloy, the as-cast microstructure was typical lamellar. With addition of 0.25wt.%Y, a large amount of pro-eutectic a phase have been observed and various YZnx intermetallic compounds were expected to successively form during cooling. Hardness of Sn-8.8Zn alloy was not affected by Y-addition and both alloys could be rolled by 90% at room temperature.

Keywords: Sn-Zn eutectic alloy, Yttrium, FactSage®, microstructure, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1994
1582 Study of the Green Composite Jute/Epoxy

Authors: A. Mir, C. Aribi, B. Bezzazi

Abstract:

Work presented is interested in the characterization of the quasistatic mechanical properties and in fatigue of a composite laminated in jute/epoxy. The natural fibers offer promising prospects thanks to their interesting specific properties, because of their low density, but also with their bio-deterioration. Several scientific studies highlighted the good mechanical resistance of the vegetable fiber composites reinforced, even after several recycling. Because of the environmental standards that become increasingly severe, one attends the emergence of eco-materials at the base of natural fibers such as flax, bamboo, hemp, sisal, jute. The fatigue tests on elementary vegetable fibers show an increase of about 60% of the rigidity of elementary fibers of hemp subjected to cyclic loadings. In this study, the test-tubes manufactured by the method infusion have sequences of stacking of 0/90° and ± 45° for the shearing and tensile tests. The quasistatic tests reveal a variability of the mechanical properties of about 8%. The tensile fatigue tests were carried out for levels of constraints equivalent to half of the ultimate values of the composite. Once the fatigue tests carried out for well-defined values of cycles, a series of static tests of traction type highlights the influence of the number of cycles on the quasi-static mechanical behavior of the laminate jute/epoxy.

Keywords: Jute, epoxy resin, mechanical, static, dynamic behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2142
1581 Experimental Analysis of Mechanical Behavior under the Effect of Temperature Frequency

Authors: A. Nedjar, S. Aguib, M. Meloussi, T. Djedid, A. Khebli, R. Harhout, L. Kobzili, N. Chikh, M. Tourab

Abstract:

Finding the mechanical properties of magnetorheological elastomers (MREs) is fundamental to create smart materials and devices with desired properties and functionalities. The MREs properties, in shear mode, have been extensively investigated, but these have been less exploited with frequency-temperature dependence. In this article, we studied the performance of MREs with frequency-temperature dependence. The elastic modulus, loss modulus and loss factor of MREs were studied under different temperature values; different values of the magnetic field and different values of the frequency. The results found showed the interest of these active materials in different industrial sectors.

Keywords: Magnetorheological elastomer, mechanical behavior, frequency, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143
1580 Mechanical Behaviour of Sisal Fibre Reinforced Cement Composites

Authors: M. Aruna

Abstract:

Emphasis on the advancement of new materials and technology has been there for the past few decades. The global development towards using cheap and durable materials from renewable resources contributes to sustainable development. An experimental investigation of mechanical behaviour of sisal fibre-reinforced concrete is reported for making a suitable building material in terms of reinforcement. Fibre reinforced Composite is one such material, which has reformed the concept of high strength. Sisal fibres are abundantly available in the hot areas. Sisal fibre has emerged as a reinforcing material for concretes, used in civil structures. In this work, properties such as hardness and tensile strength of sisal fibre reinforced cement composites with 6, 12, 18 and 24% by weight of sisal fibres were assessed. Sisal fibre reinforced cement composite slabs with long sisal fibres were manufactured using a cast hand lay up technique. Mechanical response was measured under tension. The high energy absorption capacity of the developed composite system was reflected in high toughness values under tension respectively. 

Keywords: Sisal fibre, fibre-reinforced concrete, mechanical behaviour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4116
1579 Effect of Zr Addition on Mechanical Properties of Cr-Mo Plastic Mold Steels

Authors: Hyun-Ho Kim, Seok-Jae Lee, Oh-Yeon Lee

Abstract:

We investigated the effects of the additions of Zr and other alloying elements on the mechanical properties and microstructure in Cr-Mo plastic mold steels. The addition of alloying elements changed the microstructure of the normalized samples from the upper bainite to lower bainite due to the increased hardenability. The tempering temperature influenced the strength and hardness values, especially the phenomenon of 350oC embrittlement was observed. The alloy additions of Cr, Mo, and V improved the resistance to the temper embrittlement. The addition of Zr improved the tensile strength and yield strength, but the impact energy was sharply decreased. It may be caused by the formation of Zr-MnS inclusion and rectangular-shaped Zr inclusion due to the Zr addition.

Keywords: Inclusions, mechanical properties, plastic mold steel, Zr addition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321
1578 Mechanical Structure Design Optimization by Blind Number Theory: Time-dependent Reliability

Authors: Zakari Yaou, Lirong Cui

Abstract:

In a product development process, understanding the functional behavior of the system, the role of components in achieving functions and failure modes if components/subsystem fails its required function will help develop appropriate design validation and verification program for reliability assessment. The integration of these three issues will help design and reliability engineers in identifying weak spots in design and planning future actions and testing program. This case study demonstrate the advantage of unascertained theory described in the subjective cognition uncertainty, and then applies blind number (BN) theory in describing the uncertainty of the mechanical system failure process and the same time used the same theory in bringing out another mechanical reliability system model. The practical calculations shows the BN Model embodied the characters of simply, small account of calculation but betterforecasting capability, which had the value of macroscopic discussion to some extent.

Keywords: Mechanical structure Design, time-dependent stochastic process, unascertained information, blind number theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
1577 Assessing Students’ Attitudinal Response towards the Use of Virtual Reality in a Mandatory English Class at a Women’s University in Japan

Authors: Felix David

Abstract:

The use of virtual reality (VR) technology is still in its infancy. This is especially true in a Japanese educational context with very little to no exposition of VR technology inside classrooms. Technology is growing and changing rapidly in America, but Japan seems to be lagging behind in integrating VR into its curriculum. The aim of this research was to expose 111 students from Hiroshima Jogakuin University (HJU) to seven classes that involved VR content and assess students’ attitudinal responses toward this new technology. The students are all female, and they are taking the “Kiso Eigo/基礎英語” or Foundation English course, which is mandatory for all first- and second-year students. Two surveys were given, one before the treatment and a second survey after the treatment, which in this case means the seven VR classes. These surveys first established that the technical environment could accommodate VR activities in terms of internet connection, VR headsets, and the quality of the smartphone’s screen. Based on the attitudinal responses gathered in this research, VR is perceived by students as “fun,” useful to “learn about the world,” as well as being useful to “learn about English.” This research validates VR as a worthy educational tool and it should therefore continue being an integral part of the mandatory English course curriculum at HJU.

Keywords: Virtual Reality, smartphone, English Learning, curriculum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163
1576 A Study on Cement-Based Composite Containing Polypropylene Fibers and Finely Ground Glass Exposed to Elevated Temperatures

Authors: O. Alidoust, I. Sadrinejad, M. A. Ahmadi

Abstract:

High strength concrete has been used in situations where it may be exposed to elevated temperatures. Numerous authors have shown the significant contribution of polypropylene fiber to the spalling resistance of high strength concrete. When cement-based composite that reinforced by polypropylene fibers heated up to 170 °C, polypropylene fibers readily melt and volatilize, creating additional porosity and small channels in to the matrix that cause the poor structure and low strength. This investigation develops on the mechanical properties of mortar incorporating polypropylene fibers exposed to high temperature. Also effects of different pozzolans on strength behaviour of samples at elevated temperature have been studied. To reach this purpose, the specimens were produced by partial replacement of cement with finely ground glass, silica fume and rice husk ash as high reactive pozzolans. The amount of this replacement was 10% by weight of cement to find the effects of pozzolans as a partial replacement of cement on the mechanical properties of mortars. In this way, lots of mixtures with 0%, 0.5%, 1% and 1.5% of polypropylene fibers were cast and tested for compressive and flexural strength, accordance to ASTM standard. After that specimens being heated to temperatures of 300, 600 °C, respectively, the mechanical properties of heated samples were tested. Mechanical tests showed significant reduction in compressive strength which could be due to polypropylene fiber melting. Also pozzolans improve the mechanical properties of sampels.

Keywords: Mechanical properties, compressive strength, Flexural strength, pozzolanic behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168
1575 Stability of a Self-Excited Machine Due to the Mechanical Coupling

Authors: M. Soltan Rezaee, M. R. Ghazavi, A. Najafi, W.-H. Liao

Abstract:

Generally, different rods in shaft systems can be misaligned based on the mechanical system usages. These rods can be linked together via U-coupling easily. The system is self-stimulated and may cause instabilities due to the inherent behavior of the coupling. In this study, each rod includes an elastic shaft with an angular stiffness and structural damping. Moreover, the mass of shafts is considered via attached solid disks. The impact of the system architecture and shaft mass on the instability of such mechanism are studied. Stability charts are plotted via a method based on Floquet theory. Eventually, the unstable points have been found and analyzed in detail. The results show that stabilizing the driveline is feasible by changing the system characteristics which include shaft mass and architecture.

Keywords: Coupling, mechanical systems, oscillations, rotating shafts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 758
1574 Cost Effective Real-Time Image Processing Based Optical Mark Reader

Authors: Amit Kumar, Himanshu Singal, Arnav Bhavsar

Abstract:

In this modern era of automation, most of the academic exams and competitive exams are Multiple Choice Questions (MCQ). The responses of these MCQ based exams are recorded in the Optical Mark Reader (OMR) sheet. Evaluation of the OMR sheet requires separate specialized machines for scanning and marking. The sheets used by these machines are special and costs more than a normal sheet. Available process is non-economical and dependent on paper thickness, scanning quality, paper orientation, special hardware and customized software. This study tries to tackle the problem of evaluating the OMR sheet without any special hardware and making the whole process economical. We propose an image processing based algorithm which can be used to read and evaluate the scanned OMR sheets with no special hardware required. It will eliminate the use of special OMR sheet. Responses recorded in normal sheet is enough for evaluation. The proposed system takes care of color, brightness, rotation, little imperfections in the OMR sheet images.

Keywords: OMR, image processing, hough circle transform, interpolation, detection, Binary Thresholding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
1573 Influence of Different Thicknesses on Mechanical and Corrosion Properties of α-C:H Films

Authors: S. Tunmee, P. Wongpanya, I. Toda, X. L. Zhou, Y. Nakaya, N. Konkhunthot, S. Arakawa, H. Saitoh

Abstract:

The hydrogenated amorphous carbon films (α-C:H) were deposited on p-type Si (100) substrates at different thicknesses by radio frequency plasma enhanced chemical vapor deposition technique (rf-PECVD). Raman spectra display asymmetric diamond-like carbon (DLC) peaks, representative of the α-C:H films. The decrease of intensity ID/IG ratios revealed the sp3 content arise at different thicknesses of the α-C:H films. In terms of mechanical properties, the high hardness and elastic modulus values showed the elastic and plastic deformation behaviors related to sp3 content in amorphous carbon films. Electrochemical properties showed that the α-C:H films exhibited excellent corrosion resistance in air-saturated 3.5 wt.% NaCl solution for pH 2 at room temperature. Thickness increasing affected the small sp2 clusters in matrix, restricting the velocity transfer and exchange of electrons. The deposited α-C:H films exhibited excellent mechanical properties and corrosion resistance.

Keywords: Thickness, Mechanical properties, Electrochemical corrosion properties, α-C:H film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5265
1572 Mechanical Characterization of Extrudable Foamed Concrete: An Experimental Study

Authors: D. Falliano, D. De Domenico, G. Ricciardi, E. Gugliandolo

Abstract:

This paper is focused on the mechanical characterization of foamed concrete specimens with protein-based foaming agent. Unlike classic foamed concrete, a peculiar property of the analyzed foamed concrete is the extrudability, which is achieved via a specific additive in the concrete mix that significantly improves the cohesion and viscosity of the fresh cementitious paste. A broad experimental campaign was conducted to evaluate the compressive strength and the indirect tensile strength of the specimens. The study has comprised three different cement types, two water/cement ratios, three curing conditions and three target dry densities. The variability of the strength values upon the above mentioned factors is discussed.

Keywords: Cement type, curing conditions, density, extrudable concrete, foamed concrete, mechanical characterization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276
1571 Mechanical Buckling of Functionally Graded Engesser-Timoshenko Beams Located on a Continuous Elastic Foundation

Authors: M. Karami Khorramabadi, A. R. Nezamabadi

Abstract:

This paper studies mechanical buckling of functionally graded beams subjected to axial compressive load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. Applying the Hamilton's principle, the equilibrium equation is established. The influences of dimensionless geometrical parameter, functionally graded index and foundation coefficient on the critical buckling load of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Mechanical Buckling, Functionally graded beam- Engesser-Timoshenko beam theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
1570 Characterization of Two Hybrid Welding Techniques on SA 516 Grade 70 Weldments

Authors: M. T. Z. Butt, T. Ahmad, N. A. Siddiqui

Abstract:

Commercially SA 516 Grade 70 is frequently used for the manufacturing of pressure vessels, boilers and storage tanks etc. in fabrication industry. Heat input is the major parameter during welding that may bring significant changes in the microstructure as well as the mechanical properties. Different welding technique has different heat input rate per unit surface area. Materials with large thickness are dealt with different combination of welding techniques to achieve required mechanical properties. In the present research two schemes: Scheme 1: SMAW (Shielded Metal Arc Welding) & GTAW (Gas Tungsten Arc Welding) and Scheme 2: SMAW & SAW (Submerged Arc Welding) of hybrid welding techniques have been studied. The purpose of these schemes was to study hybrid welding effect on the microstructure and mechanical properties of the weldment, heat affected zone and base metal area. It is significant to note that the thickness of base plate was 12 mm, also welding conditions and parameters were set according to ASME Section IX. It was observed that two different hybrid welding techniques performed on two different plates demonstrated that the mechanical properties of both schemes are more or less similar. It means that the heat input, welding techniques and varying welding operating conditions & temperatures did not make any detrimental effect on the mechanical properties. Hence, the hybrid welding techniques mentioned in the present study are favorable to implicate for the industry using the plate thickness around 12 mm thick.

Keywords: Grade 70, GTAW, hybrid welding, SAW, SMAW.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310
1569 Seismic Behavior of Three-Dimensional Steel Buildings with Post-Tensioned Connections

Authors: M. E. Soto-López, I. Gaxiola-Avendaño, A. Reyes-Salazar, E. Bojórquez, S. E. Ruiz

Abstract:

The seismic responses of steel buildings with semirigid post-tensioned connections (PC) are estimated and compared with those of steel buildings with typical rigid (welded) connections (RC). The comparison is made in terms of global and local response parameters. The results indicate that the seismic responses in terms of interstory shears, roof displacements, axial load and bending moments are smaller for the buildings with PC connection. The difference is larger for global than for local parameters, which in turn varies from one column location to another. The reason for this improved behavior is that the buildings with PC dissipate more hysteretic energy than those with RC. In addition, unlike the case of buildings with WC, for the PC structures the hysteretic energy is mostly dissipated at the connections, which implies that structural damage in beams and columns is not significant. According to these results, steel buildings with PC are a viable option in high seismicity areas because of their smaller response and self-centering connection capacity as well as the fact that brittle failure is avoided.

Keywords: Inter-story drift, Nonlinear time-history analysis, Post-tensioned connections, Steel buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161
1568 The Influence of Substrate Bias on the Mechanical Properties of a W- and S-containing DLC-based Solid-lubricant Film

Authors: Guojia Ma, Guoqiang Lin, Shuili Gong, Gang Sun, Dawang Wang

Abstract:

A diamond-like carbon (DLC) based solid-lubricant film was designed and DLC films were successfully prepared using a microwave plasma enhanced magnetron sputtering deposition technology. Post-test characterizations including Raman spectrometry, X-ray diffraction, nano-indentation test, adhesion test, friction coefficient test were performed to study the influence of substrate bias voltage on the mechanical properties of the W- and S-doped DLC films. The results indicated that the W- and S-doped DLC films also had the typical structure of DLC films and a better mechanical performance achieved by the application of a substrate bias of -200V.

Keywords: Adhesive Strength, Coefficient of Friction, Substrate Bias, W- and S-doped DLC film

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
1567 Fabrication, Testing and Machinability Evaluation of Glass Fiber Reinforced Epoxy Composites

Authors: S. S. Panda, Arkesh Chouhan, Yogesh Deshpande

Abstract:

The present paper deals with designing and fabricating an apparatus for the speedy and accurate manufacturing of fiber reinforced composite lamina of different orientation, thickness and stacking sequences for testing. Properties derived through an analytical approach are verified through measuring the elastic modulus, ultimate tensile strength, flexural modulus and flexural strength of the samples. The 00 orientation ply looks stiffer compared to the 900 ply. Similarly, the flexural strength of 00 ply is higher than to the 900 ply. Sample machinability has been studied by conducting numbers of drilling based on Taguchi Design experiments. Multi Responses (Delamination and Damage grading) is obtained using the desirability approach and optimum cutting condition (spindle speed, feed and drill diameter), at which responses are minimized is obtained thereafter. Delamination increases nonlinearly with the increase in spindle speed. Similarly, the influence of the drill diameter on delamination is higher than the spindle speed and feed rate.

Keywords: Delamination, FRP composite, multi response optimization, Taguchi design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1224
1566 Development of Elasticity Modulus in Time for Concrete Containing Mineral Admixtures

Authors: K. Krizova, R. Hela, S. Keprdova

Abstract:

This paper introduces selected composition of conventional concretes and their resulting mechanical properties at different ages of concrete. With respect to utilization of mineral admixtures, fly ash and ground limestone agents were included in addition to pure Portland binder. The proposal of concrete composition remained constant in basic concrete components such as cement and representation of individual contents of aggregate fractions; weight dosing of admixtures and water dose were only modified. Water dose was chosen in order to achieve identical consistence by settlement for all proposals of concrete composition. Mechanical properties monitored include compression strength, static and dynamic modulus of concrete elasticity, at ages of 7, 28, 90, and 180 days.

Keywords: Cement, mineral admixtures, microstructure of concrete, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034
1565 Effect of Copper on Microstructure and Mechanical Properties of Construction Steel

Authors: Olatunde I. Sekunowo, Stephen I. Durowaye, Oluwashina P. Gbenebor

Abstract:

Copper being one of the major intrinsic residual impurities in steel possesses the tendency to induce severe microstructural distortions if not controlled within certain limits. Hence, this paper investigates the effect of this element on the mechanical properties of construction steel with a view to ascertain its safe limits for effective control. The experiment entails collection of statistically scheduled samples of hot rolled profiles with varied copper concentrations in the range of 0.12-0.39 wt. %. From these samples were prepared standard test specimens subjected to tensile, impact, hardness and microstructural analyses. Results show a rather huge compromise in mechanical properties as the specimens demonstrated 54.3%, 74.2% and 64.9% reduction in tensile strength, impact energy and hardness respectively as copper content increases from 0.12 wt. % to 0.39 wt. %. The steel’s abysmal performance is due to the severe distortion of the microstructure occasioned by the development of incoherent complex compounds which weaken the pearlite reinforcing phase. It is concluded that the presence of copper above 0.22 wt. % is deleterious to construction steel performance.

Keywords: Construction steel, mechanical properties, processing method, trace elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5671
1564 Overall Effect of Nano Clay on the Physical Mechanical Properties of Epoxy Resin

Authors: Alireza BozorgianÏî Navid Majdi Nasab, Hassan Mirzazadeh

Abstract:

In this paper, the effect of modified clay on the mechanical efficiency of epoxy resin is examined. Studies by X ray diffraction and microscopic transient electron method show that modified clay distribution in polymer area is intercalated kind. Examination the results of mechanical tests shows that existence of modified clay in epoxy area increases pressure yield strength, tension module and nano composite fracture toughness in relate of pure epoxy. By microscopic examinations it is recognized too that the action of toughness growth of this kind of nano composite is due to crack deflection, formation of new surfaces and fracture of clay piles.

Keywords: Nano clay, Epoxy, Toughness, Composite

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2172
1563 Mechanical Properties of Recycled Plasticized PVB/PVC Blends

Authors: Michael Tupý, Dagmar Měřínská, Alice Tesaříková-Svobodová, Christian Carrot, Caroline Pillon, Vít Petránek

Abstract:

The mechanical properties of blends consisting of plasticized poly(vinyl butyral) (PVB) and plasticized poly(vinyl chloride) (PVC) are studied, in order to evaluate the possibility of using recycled PVB waste derived from windshields. PVC was plasticized with 38% of diisononyl phthalate (DINP), while PVB was plasticized with 28% of triethylene glycol, bis(2-ethylhexanoate) (3GO). The optimal process conditions for the PVB/PVC blend in 1:1 ratio were determined. Entropy was used in order to theoretically predict the blends miscibility. The PVB content of each blend composition used was ranging from zero to 100%. Tensile strength and strain were tested. In addition, a comparison between recycled and original PVB, used as constituents of the blend, was performed.

Keywords: Poly(vinyl butyral), poly(vinyl chloride), windshield, polymer waste, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4724