Study of the Green Composite Jute/Epoxy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Study of the Green Composite Jute/Epoxy

Authors: A. Mir, C. Aribi, B. Bezzazi

Abstract:

Work presented is interested in the characterization of the quasistatic mechanical properties and in fatigue of a composite laminated in jute/epoxy. The natural fibers offer promising prospects thanks to their interesting specific properties, because of their low density, but also with their bio-deterioration. Several scientific studies highlighted the good mechanical resistance of the vegetable fiber composites reinforced, even after several recycling. Because of the environmental standards that become increasingly severe, one attends the emergence of eco-materials at the base of natural fibers such as flax, bamboo, hemp, sisal, jute. The fatigue tests on elementary vegetable fibers show an increase of about 60% of the rigidity of elementary fibers of hemp subjected to cyclic loadings. In this study, the test-tubes manufactured by the method infusion have sequences of stacking of 0/90° and ± 45° for the shearing and tensile tests. The quasistatic tests reveal a variability of the mechanical properties of about 8%. The tensile fatigue tests were carried out for levels of constraints equivalent to half of the ultimate values of the composite. Once the fatigue tests carried out for well-defined values of cycles, a series of static tests of traction type highlights the influence of the number of cycles on the quasi-static mechanical behavior of the laminate jute/epoxy.

Keywords: Jute, epoxy resin, mechanical, static, dynamic behavior.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1108438

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161

References:


[1] W. P. Schmidt, H. M. Beyer. 1998 Life Cycle Study on a Natural Fiber Reinforced Component. SAE Technical Paper 982195.
[2] C. Baley. 2002. Analysis of the flax fibers tensile behavior and analysis of the tensile stiffness increase. Composites 33A. 939–948.
[3] H.CH.Spatz, L.Köhler et K.J. Niklas. 1999 Mechanical behavior of plant tissue: composite materials or structures. J. of Exp. Biology, 202. 3269- 3272.
[4] L. Köhler, H.C. Spatz. 2002. Micromechanics of plant tissues beyond the linear-elastic range. Planta, 215. 33-40.
[5] L. J. Broutman Sahu S. 1972. Composites Materials, testing and design. ASTM STP, 170-188.
[6] Ph. Boisse, B. Zouari, A. Gasser. 2005. A mesoscopic approach for the simulation of woven fiber composite forming. Composites. Science and Technology 65 429–436.
[7] S. Kawabata, M. Niwa, H. J. Kawai. 1973. The Finite Deformation Theory of Plain Weave Fabrics Part I: The Biaxial Deformation Theory. Textile Inst. 64-1, 21-46.
[8] J. Gassan, I. Mildner, and A. K. Bledzki. 1999. Influence of fiber structure modification on the mechanical properties of Flax Fiber-Epoxy composites. Mechanics of Comp. Materials, Vol. 35/ 5.
[9] K. Chaudhuri, M.A. Chaudhuri. 1998. Effects of short-term NaCl stress on water relations and gas exchange of two jute species. Biologia plantarum 40 (3). 373-380.
[10] J.W.S. Hearle. The fine structure of fibers and crystalline polymers. III. Interpretation of the mechanical properties of fibers. Journal of Applied Polymers Science, 7 1207-1223 (1963).
[11] R. Rao, N. Balas. And J. Chanda. 1981. App. Poly. Sci. Engg. 26. 9069.
[12] S.K.Garkhail, R.W.H. Heijenrath, T. Peijs. 2000. Mechanical properties of natural-fiber-mat reinforced thermoplastics based on flax fibers and polypropylene. Appl. Compos. Mater. 7. 351–372.
[13] D. Ray, BK. Sarkar, S. Das, AK. Rana. 2002. Dynamic mechanical and thermal analysis of vinylester–resin– matrix composites reinforced with untreated and alkali-treated jute fibers.Compos Sci Technol; 62:9 11–17.
[14] LY. Mwaikambo, M.P. Ansell. 2003. Hemp fiber reinforced cashew nut shell liquid composites. Compos Sci Technol; 63:1. 297–305.
[15] M.A. Khan, F. Mina, L.T. Drzal. 2000. Influence of silane coupling agents of different functionalities on the performance of jute– polycarbonate composites. 3rd int. wood and natural fiber composite symposium.
[16] J. Gassan, AK. Bledzki. Effect of cyclic moisture absorption desorption on the mechanical properties of silanized jute–epoxy composites. Polym. Composites, 20 (4):6. 04–11 (1999).
[17] LA. Pothan, S. Thomas. Compos Science and Technologie, 63:12. 31– 40 (2003).
[18] PJ Herrera-Franco, A. Valadez-Gonzales. 2004. Mechanical properties of continuous natural fiber reinforced polymer composites. Composites Part A.; 35:3. 39–45.
[19] M.A. Khan, M.M. Rahman, K.S. Akhunzada. 2002. Grafting of different monomers onto jute yarn by in situ UV-radiation method: effect of additives. Polym Plast Tech Eng;41(4):6. 77–89.
[20] M. Masudul Hassan, M.R. Islam, M.A. Khan. 2003Improvement of physicomechanical properties of jute yarn by photografting with 3- (trimethoxysilyl) propylmethacrylate. Adhes Sci Technol. 17(5):7. 37– 50.
[21] D. Plackett and A. Vázquez. 2004. Green Composites: polymer composites and the environment. Woodhead Publishers, Cambridge. 123.
[22] M. A. Khan, N. Haque, A. Al-Kafi, M. N. Alam, M. Z. Abedin. 2006. Jute reinforced polymer composite by gamma radiation: Effect of surface treatment with UV radiation. ISSN 0360-2559 CODEN PPTEC7. vol. 45, 4-6. 607-613.
[23] R. G. Raj, B. V. Kokta and C. Daneault. 1990. Wood flour as a low-cost reinforcing filler for polyethylene: studies on mechanical properties. J. of Materials Science, 25.1851-1855.
[24] D. Harper and M. Wolcott. 2004. Interaction between coupling agent and lubricants in wood–polypropylene composites. Comp. Part A: Applied Sci. and Manuf. 35. 385-394.
[25] Aranberri, T. Lampke and A. Bismarck. 2003. Wetting behavior of flax fibers as reinforcement for polypropylene. J. of Colloid and Interf. Sci. 263. 580-589.
[26] Karmarkar, S. Chauhan, M. Modak, M. Chanda. 2007. Mechanical properties of wood–fiber reinforced polypropylene composites: Effect of a novel compatibilizer with isocyanate functional group. Comp. Part A. 38 (2). 227-233.
[27] J. B. Naik, S. Mishra, C. Esterification. 2007. Effect of Maleic Anhydride on Surface and Volume Resistivity of Natural Fiber/Polystyrene. Polymer-Plastics Techno. and engineering 46. 537– 540.
[28] Sy Trek Sean. 2007. Composites from Newsprint Fiber and Polystyrene. Technology and engineering, 46(4). 421 – 425.
[29] T. Keener, R.Stuart, T.Brown. 2004. Maleated coupling agents for natural fiber composites. C. Part A: Applied S. and Manuf. 35 (3).357- 363.
[30] H. Jiang, D. P. Kamdem. 2004. Development of poly(vinyl chloride)/wood composites. Journal of Vinyl and Additive Technology. 10 (2). 59-69.
[31] K. Sabeel Ahmed, S.Viyayarangan. 2008. Tensile, flexural and interlaminar shear properties of woven jute and jute-glass fabric reinforced polyester composites. J. of mat. processing technology 207. 330-335.
[32] K. Sabeel A, S.Viyayarangan and C. Rajput. Mechanical behavior of isothalic polyester-based untreated woven Jute and glass fabric hybrid composites. Journal of Reinforced Plastics & Composites, 25(15). 1549- 1569.
[33] D. Placketta, T. Løgstrup, W. Batsberg, L. Nielsenc. 2003. Biodegradable composites based on l-polylactide and jute fibers. C. Sci. and T. 63. 1287–1296.
[34] M. Wollerdorfer, H. Bader. 1998. Influence of natural fibers on the mechanical properties of biodegradable polymers. Industrial Crops and Products 8. 105–112.
[35] K. Van de Velde, P. Kiekens, 2002. Biopolymers: overview of several properties and consequences on their applications. Polymer Testing 21. 433–442.
[36] V. Alvarez, E. Rodriguez, A. Vázquez. 2006. Thermal degradation and decomposition of Jute/Vinylester composites. J. of Thermal A. and Calori. 85 2. 383–389.
[37] C. Hong, I. Hwang, N. Kim, D. Park, B. Hwang, C. Nah. 2008. Mechanical properties of silanized jute-polypropylene composites. J. of Ind. and Engineering Chemistry 14. 71-76.
[38] Sakurada, Y. Nukushina, T. Ito. 1962. Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J/ Polym Sci, 57. 651-660.
[39] G.C. Davies, D.M. Bruce. 1998. Effect of environmental relative humidity and damage on the tensile properties of flax and nettle fibers. Res. Journal, 68(9) 623-629.