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Abstract—This paper studies mechanical buckling of
functionally graded beams subjected to axial compressive load that is
simply supported at both ends lies on a continuous elastic foundation.
The displacement field of beam is assumed based on Engesser-
Timoshenko beam theory. Applying the Hamilton's principle, the
equilibrium equation is established. The influences of dimensionless
geometrical parameter, functionally graded index and foundation
coefficient on the critical buckling load of beam are presented. To
investigate the accuracy of the present analysis, a compression study
is carried out with a known data.
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l. INTRODUCTION

THE concept of functionally graded materials (FGMs) was

first suggested by a group of Japanese scientists in 1984
to address the needs of aggressive environment of thermal
shock [1]. Nowadays, FGMs have been widely explored in
various engineering applications including electronics,
chemistry, optics, biomedicine and the like [2]. More recently,
Ichinose et al. [3] succeeded in fabricating ultrasonic
transducers with functionally graded piezoelectric ceramics.
On the macroscopic scale, FGMs are anisotropic,
inhomogeneous and possess spatially continuous mechanical
properties. Because discernible internal seams or boundaries
do not exist in FGM, no internal stress peaks are caused when
external load is applied and thus failure from interfacial
debonding or from stress concentration can be avoided. In this
respect, FGMs are more superior to the conventional
laminated materials [4-6]. Piezoelectric materials have
coupled effects between electric field and elastic deformation
and have been widely integrated with structures to control
deformation, vibration, acoustics, etc. These new structures
including FGM members bonded with piezoelectric actuators
and sensors are smart in response to environmental changes
[7-14]. Ootao and Tanigawa [15] investigated the three-
dimensional transient piezothermoelastic problem of an FGM
rectangular plate bonded to a piezoelectric plate due to partial
heat supply. They modeled the FGM plate as a laminate and
adopted a solution methodology similar to Pagano [16].
Through numerical examination, they showed that the
maximum transient states of transverse normal stress and
transverse shear stress in the plate can be reduced by
functional grading.
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A comprehensive study was conducted for the shape and
vibration control of FGM plates and shells with integrated
piezoelectric sensors and actuators by Liew and his associates
using finite element method [17-18].To the author's
knowledge, there is no analytical solution available in the
open literatures for mechanical buckling of functionally
graded Engesser-Timoshenko beams located on a continuous
elastic foundation. In the present work, the mechanical
buckling of a functionally graded Engesser-Timoshenko beam
subjected to axial compressive loads lies on a continuous
elastic foundation is studied. Appling the Hamilton's principle,
the equilibrium equations of beam are derived and solved. The
effects of the foundation coefficient, dimensionless
geometrical parameter and functionally graded index on the
critical buckling load of beam are presented. To investigate
the accuracy of the present analysis, a compression study is
carried out with a known data.

1. FORMULATION
The formulation that is presented here is based on the
assumptions of Engesser-Timoshenko beam theory. Based on
this theory, the displacement field can be written as [20]:

u(x,z) = z¢(x)

wW(X,z) =W, (X,2) @

In view of the displacement field given in Egs (1), the strain
displacement relations are given by [20]:

ou _dg¢
€XX:&=Z&
2
_@+@v—¢+d_vv
Ye =5 o dx

Consider a functionally graded beam with rectangular
cross-section. The thickness, length, and width of the beam are
denoted, respectively, by h,L,and b. The x-y plane
coincides with the midplane of the beam and the z- axis
located along the thickness direction. The Young's modulus E
is assumed to vary as a power form of the thickness coordinate
variable z (-h/2<z<h/2) as follow [19]:

27+ hjk 3)

E(z)=(E. -Ey)V +Ep, V:( oh
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where k is the power law index and the subscripts m and c
refer to the metal and ceramic constituents, respectively. The
constitutive relations for functionally graded Engesser-
Timoshenko beam are given by [21]:

O-xx = Qll (Z)gxx

4)
xz = Q55 (Z)yxz

where o,,,0,, ,Q,; and Q. are the normal ,shear stresses

and plane stress-reduced stiffnesses respectively. Also, u and
w are the displacement components in the x- and
z - directions, respectively.

The potential energy can be expressed as [20]:

[ EALY ®

Substituting Egs. (2)-(4) into Eg. (6) and neglecting the
higher-order terms lead to

1 dg).,_dg
=3 [(Qn(z&j)(z&)

dw
&))@5 +

)

FQu(+ ‘;—W)]dv
X

The width of beam is assumed to be constant, which is
obtained by integrating along y over v.Then Eq. (7) becomes

d¢ A , dw,,
0 [dxj e T

2 0
+2¢ d—W)]dx
dx
)]
where
h
"2
A= [Qu(@)dz
.
h
"2
D= jzlel (2)dz )
h
2

where Aand D are the shear rigidity and flexural rigidity
respectively. Note that, the extensional displacement is
neglected. Thus, the potential energy can be written as
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bt dg
u=5[[D<d + A(g? (X) 2¢—]dx (10)

The beam is subjected to the axial compressive loads, P as
shown in Fig. 1.
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Fig. 1 Simply supported beam under compressive loads.

The work done by the axial compressive load can be

expressed as [20]:
15 (ow)’
w==] P[—J dx
2 OX

0

(11)

We apply the Hamilton's principle to derive the equilibrium
equations of beam, that is [21]:

t
5I(r—u W) dt = (12)

Substitution from Egs. (10) and (11) into Eq. (12) leads to
the following equilibrium equations of the the functionally
graded beam based on first order shear deformation theory.
Assume that a functionally graded beam that is simply
supported at both ends lies on a continuous elastic foundation,
whose reaction at every point is proportional to the deflection
(Winkler foundation). The equilibrium equation of the
functionally graded beam based on first order shear
deformation theory located on a continuous elastic foundation
subjected to a axial compressive load is obtained from
equilibrium equations by the addition of nw for the

foundation reaction as

d?w

T+ bA(%) -0

(P—bA)
g2 (13)
A+ —) 20 ? ¢) 0

where 77 is the foundation coefficient.

I1. STABILITY ANALYSIS
The boundary conditions for the pin-ended Engesser-
Timoshenko beam are given by:

2
wodw_dé

Xx=L
dx®  dx

x=0 and

(14)
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Substituting Eqg. (14) into (13) and by equating power-law
index to zero and neglecting the foundation coefficient, the
critical buckling load of a functionally graded Engesser-
Timoshenko beam will be derived, that is:

(E)Z bh3Q11
o =L 12
1+ (L)Z 12Q55

7" bh’Q,

(15)

The above equation has been reported by Wang and Reddy
[20].

IV. NUMERICAL RESULTS
The mechanical buckling behaviors of simply supported
functionally graded Engesser-Timoshenko beams lies on a
continuous elastic foundation are studied in this paper. The
material properties of the beam are listed in Table 1.

TABLE |
MATERIAL PROPERTIES
Property FGM layer
Stainless Nickel
steel
Young's modulus
E (GPa) 221.04 223.95
Poisson's ratio v 03 0.3
Length L (m) 03 0.3
Thickness h (m) 0.01 0.01
Density p (Kgm™) 8166 | 8900

The Poisson’s ratio is chosen to be 0.3 for both materials.
The variation of the critical buckling loads for functionally
graded Engesser-Timoshenko evaluated considering of
b/h=1, L=1 and several values of foundation coefficient
are shown in Table 2. It is seen that the critical buckling loads
for FG Engesser-Timoshenko beam increased with an increase
of the foundation coefficient 77. Fig. 2. demonstrates the
critical buckling loads for functionally graded Engesser-
Timoshenko beam. It is seen that the critical buckling loads
for Engesser-Timoshenko beam increased with an increase of
the ratio h/L and decreased with an increase of power-law
index of constituent volume fraction.

TABLE Il
VARIATION OF THE CRITICAL BUCKLING LOAD OF FG BEAM WITH
PIEZOELECTRIC ACTUATORS VERSUS 7]

Foundation Critical Buckling
Coefficient
(77 ) Load ( Pcr )
1000 43000N
2000 48620N
3000 50872N
4000 55468N
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Fig. 2 Critical Buckling Load of FG Beam Versus h/L

V. CONCLUSION
The mechanical buckling of a functionally graded Engesser-
Timoshenko beam located on a continuous elastic foundation
subjected to axial compressive loads is studied. It is conclude
that:

1- The critical buckling loads of FG Engesser-
Timoshenko beam are generally lower than
corresponding values for the homogeneous Engesser-
Timoshenko beam.

2- The critical buckling loads of FG Engesser-
Timoshenko beam under axial compressive load
generally increases with the increase of relative
thickness h/L.

3- The critical buckling loads of FG Engesser-
Timoshenko beam under axial compressive load
generally increase with the increase of foundation
coefficient7 .

4- The accuracy of Engesser-Timoshenko beam theory
is more than Bernoulli-Euler beam theory.
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